Theoretical prediction of percolation thresholds universally applicable for various composites remains a major theoretical challenge. In the work done by Xu (2011, “Ellipsoidal Bounds and Percolation Thresholds of Transport Properties of Composites,” Acta Mech., 223, pp. 765–774), a variational method is developed to predict optimal percolation thresholds for transport properties of three dimensional composites subjected to full dispersion of fillers. In this paper, simplified formulae are provided for engineering applications of 3D composites. New formulae are derived for optimal percolation thresholds of 2D composites, i.e., laminates and thin films, and for composites containing a combination of fillers with different aspect ratios. The effects of dimensionality and waviness are especially discussed.

References

References
1.
Broadbent
,
S.
, and
Hammersley
,
J.
, 1957, “
Percolation Processes I. Crystals and Mazes
,”
Proc. Cambridge Philos. Soc.
,
53
, pp.
629
641
.
2.
Scher
,
H.
, and
Zallen
,
R.
, 1970, “
Critical Density in Percolation Processes
,”
J. Chem. Phys.
,
53
, p.
3759
3761
.
3.
Skal
,
A. S.
,
Shklovskii
,
B. I.
, and
Efros
,
A. L.
, 1973, “
Percolation Level in a Three-Dimensional Random Potential
,”
Sov. Phys. JETP Lett.
,
17
, p.
377
.
4.
Balberg
,
I.
,
Binenbaum
,
N.
, and and
Wagner
,
N.
, 1984, “
Percolation Thresholds in the Three-Dimensional Sticks System
,”
Phys. Rev. Lett.
,
52
, pp.
1465
1468
.
5.
Celzard
,
A.
,
McRae
,
E.
,
Deleuze
,
C.
,
Dufort
,
M.
,
Furdin
,
G.
, and
Mareche
,
J. F.
, 1996, “
Critical Concentration in Percolating Systems Containing a High-Aspect-Ratio Filler
,”
Phys. Rev. B
,
53
, pp.
6209
6214
.
6.
Lu
,
C.
, and
Mai
,
Y. W.
, 2005, “
Influence of Aspect Ratio on Barrier Properties of Polymer-Clay Nanocomposites
,”
Phys. Rev. Lett.
,
95
, p.
088303
.
7.
Nan
,
C. W.
,
Shen
,
Y.
, and
Ma
,
J.
, 2010, “
Physical Properties of Composites Near Percolation
,”
Annu. Rev. Mater. Res.
,
40
, pp.
131
151
.
8.
Xu
,
X. F.
, 2011, “
Ellipsoidal Bounds and Percolation Thresholds of Transport Properties of Composites
,”
Acta Mech.
,
223
, pp.
765
774
.
9.
Hernandez
,
Y. R.
,
Gryson
,
A.
,
Blighe
,
F. M.
,
Cadek
,
M.
,
Nicolosi
,
V.
,
Blau
,
W. J.
,
Gun’ko
,
Y. K.
, and
Coleman
,
J. N.
, 2008, “
Comparison of Carbon Nanotubes and Nanodisks as Percolative Fillers in Electrically Conductive Composites
,”
Scr. Mater.
,
58
, pp.
69
72
.
10.
Yi
,
Y. B.
,
Berhan
,
L.
, and
Sastry
,
A. M.
, 2004, “
Statistical Geometry of Random Fibrous Networks, Revisited: Waviness, Dimensionality, and Percolation
,”
J. Appl. Phys.
,
96
, pp.
1318
1327
.
11.
Li
,
C.
, and
Chou
,
T. W.
, 2007, “
Continuum Percolation of Nanocomposites With Fillers of Arbitrary Shapes
,”
Appl. Phys. Lett.
,
90
, p.
174108
.
12.
Lin
,
C.
,
Wang
,
H.
, and
Yang
,
W.
, 2010, “
Variable Percolation Threshold of Composites With Fiber Fillers Under Compression
,”
J. Appl. Phys.
,
108
, p.
013509
.
13.
Ma
,
H. M.
,
Gao
,
X. L.
, and
Benson
,
T. T.
, 2010, “
Monte Carlo Modeling of the Fiber Curliness Effect on Percolation of Conductive Composites
,”
Appl. Phys. Lett.
,
96
, p.
061910
.
14.
Xu
,
X. F.
, 2009, “
Generalized Variational Principles for Uncertainty Quantification of Boundary Value Problems of Random Heterogeneous Materials
,”
ASCE J. Eng. Mech.
,
135
, pp.
1180
1188
.
You do not currently have access to this content.