This paper studies the dynamic electromechanical response of multilayered piezoelectric composites under ac electric fields from room to cryogenic temperatures for fuel injector applications. A shift in the morphotropic phase boundary (MPB) between the tetragonal and rhombohedral/monoclinic phases with decreasing temperature was determined using a thermodynamic model, and the temperature dependent piezoelectric coefficients were obtained. Temperature dependent coercive electric field was also predicted based on the domain wall energy. A phenomenological model of domain wall motion was then used in a finite element computation, and the nonlinear electromechanical fields of the multilayered piezoelectric composites from room to cryogenic temperatures, due to the domain wall motion and shift in the MPB, were calculated. In addition, experimental results on the ac electric field induced strain were presented to validate the predictions.

References

References
1.
Qing
,
X. P.
,
Beard
,
S. J.
,
Kumar
,
A.
,
Sullivan
,
K.
,
Aguilar
,
R.
,
Merchant
,
M.
, and
Taniguchi
,
M.
, 2008, “
The Performance of a Piezoelectric-Sensor-Based SHM System Under a Combined Cryogenic Temperature and Vibration Environment
,”
Smart Mater. Struct.
,
17
, p.
055010
.
2.
Park
,
J. M.
,
Taylor
,
R. P.
,
Evans
,
A. T.
,
Brosten
,
T. R.
,
Nellis
,
G. F.
,
Klein
,
S. A.
,
Feller
,
J. R.
,
Salerno
,
L.
, and
Gianchandani
,
Y. B.
, 2008, “
A Piezoelectric Microvalve for Cryogenic Applications
,”
J. Micromech. Microeng.
,
18
, p.
015023
.
3.
Senousy
,
M. S.
,
Li
,
F. X.
,
Mumford
,
D.
,
Gadala
,
M.
, and
Rajapakse
,
R. K. N. D.
, 2009, “
Thermo-Electro-Mechanical Performance of Piezoelectric Stack Actuators for Fuel Injector Applications
,”
J. Intell. Mater. Syst. Struct.
,
20
, pp.
387
399
.
4.
Senousy
,
M. S.
,
Rajapakse
,
R. K. N. D.
,
Mumford
,
D.
, and
Gadala
,
M. S.
, 2009, “
Self-Heat Generation in Piezoelectric Stack Actuators Used in Fuel Injectors
,”
Smart Mater. Struct.
,
18
, p.
045008
.
5.
Glynne-Jones
,
P.
,
Coletti
,
M.
,
White
,
N. M.
,
Gabriel
,
S. B.
, and
Bramanti
,
C.
, 2010, “
A Feasibility Study on Using Inkjet Technology, Micropumps, and MEMs as Fuel Injectors for Bipropellant Rocket Engines
,”
Acta Astronaut.
,
67
, pp.
194
203
.
6.
Paik
,
D.-S.
,
Park
,
S.-E.
,
Shrout
,
T. R.
, and
Hackenberger
,
W. J.
, 1999, “
Dielectric and Piezoelectric Properties of Perovskite Materials at Cryogenic Temperatures
,”
Mater. Sci.
,
34
, pp.
469
473
.
7.
Boucher
,
E.
,
Guiffard
,
B.
,
Lebrum
,
L.
, and
Guyomar
,
D.
, 2006, “
Effects of Zr/Ti Ratio on Structural, Dielectric and Piezoelectric Properties of Mn- and (Mn, F)-Doped Lead Zirconate Titanate Ceramics
,”
Ceram. Int.
,
32
, pp.
479
485
.
8.
Sabat
,
R. G.
,
Mukherjee
,
B. K.
,
Ren
,
W.
, and
Yang
,
G.
, 2007, “
Temperature Dependence of the Complete Material Coefficients Matrix of Soft and Hard Doped Piezoelectric Lead Zirconate Titanate Ceramics
,”
J. Appl. Phys.
,
101
, p.
064111
.
9.
Tiersten
,
H. F.
, 1969,
Linear Piezoelectric Plate Vibrations
,
Plenum
,
New York
.
10.
Cao
,
S.
,
Li
,
W.
, and
Cross
,
L. E.
, 1991, “
The Extrinsic Nature of Nonlinear Behavior Observed in Lead Zirconate Titanate Ferroelectric Ceramic
,”
J. Appl. Phys.
,
69
, pp.
7219
7224
.
11.
Arlt
,
G.
, and
Dederichs
,
H.
, 1980, “
Complex Elastic, Dielectric and Piezoelectric Constants by Domain Wall Damping in Ferroelectric Ceramics
,”
Ferroelectrics
,
19
, pp.
47
50
.
12.
Luchaninov
,
A. G.
,
Shil’Nikov
,
A. V.
,
Shuvalov
,
L. A.
, and
Shipkova
,
I. J. U.
, 1989, “
The Domain Processes and Piezoeffect in Polycrystalline Ferroelectrics
,”
Ferroelectrics
,
98
, pp.
123
126
.
13.
Li
,
S.
,
Bhalla
,
A. S.
,
Newnham
,
R. E.
, and
Cross
,
L. E.
, 1993, “
Quantitative Evaluation of Extrinsic Contribution to Piezoelectric Coefficient d33 in Ferroelectric PZT Ceramics
,”
Mater. Lett.
,
17
, pp.
21
26
.
14.
Narita
,
F.
,
Shindo
,
Y.
, and
Mikami
,
M.
, 2005, “
Analytical and Experimental Study of Nonlinear Bending Response and Domain Wall Motion in Piezoelectric Laminated Actuators Under AC Electric Fields
,”
Acta. Mater.
,
53
, pp.
4523
4529
.
15.
Kumar
,
A.
, and
Waghmare
,
U. V.
, 2010, “
First-Principles Free Energies and Ginzburg-Landau Theory of Domains and Ferroelectric Phase Transitions in BaTiO3
,”
Phys. Rev. B.
,
82
, p.
054117
.
16.
Wang
,
B.-L.
, and
Mai
,
Y.-W.
, 2005, “
An Electrode Analysis for Multilayer Ceramic Actuators
,”
Sens. Actuators, A
,
121
, pp.
203
212
.
17.
Hom
,
C. L.
, and
Shankar
,
N.
, 1995, “
Numerical Analysis of Relaxor Ferroelectric Multilayered Actuators and 2-2 Composite Arrays
,”
Smart Mater. Struct.
,
4
, pp.
305
317
.
18.
Gong
,
X.
, and
Suo
,
Z.
, 1996, “
Reliability of Ceramic Multilayer Actuators: A Nonlinear Finite Element Simulation
,”
J. Mech. Phys. Solids
,
44
, pp.
751
769
.
19.
Hwang
,
S. C.
,
Lynch
,
C. S.
, and
McMeeking
,
R. M.
, 1995, “
Ferroelectric/Ferroelastic Interactions and a Polarization Switching Model
,”
Acta Metall. Mater.
,
43
, pp.
2073
2084
.
20.
Jaffe
,
B.
,
Cook
,
W. R.
, and
Jahhe
,
H.
, 1971,
Piezoelectric Ceramics
,
Academic Press
, p.
135
.
21.
Noheda
,
B.
,
Cox
,
D. E.
,
Shirane
,
G.
,
Guo
,
R.
,
Jones
,
B.
, and
Cross
,
L. E.
, 2000, “
Stability of the Monoclinic Phase in the Ferroelectric Perovskite PbZr1−xTixO3
,”
Phys. Rev. B.
,
63
, p.
014103
.
22.
Bell
,
A. J.
, and
Furman
,
E.
, 2003, “
A Two-Parameter Thermodynamic Model for PZT
,”
Ferroelectrics
,
293
, pp.
19
31
.
23.
Pandey
,
D.
,
Singh
,
A. K.
, and
Baik
,
S.
, 2008, “
Stability of Ferroic Phases in the Highly Piezoelectric Pb(ZrxTi1−x)O3 Ceramics
,”
Acta Crystallogr.
,
63
, pp.
192
203
.
24.
JEITA EM-4501, 2006, Standard of Japan Electronics and Information Technology Industries Association.
You do not currently have access to this content.