A consistent asymptotic expansion multiscale formulation is presented for analysis of the heterogeneous column structure, which has three dimensional periodic reinforcements along the axial direction. The proposed formulation is based upon a new asymptotic expansion of the displacement field. This new multiscale displacement expansion has a three dimensional form, more specifically, it takes into account the axial periodic property but simultaneously keeps the cross section dimensions in the global scale. Thus, this formulation inherently reflects the characteristics of the column structure, i.e., the traction free condition on the circumferential surfaces. Subsequently, the global equilibrium problem and the local unit cell problem are consistently derived based upon the proposed asymptotic displacement field. It turns out that the global homogenized problem is the standard axial equilibrium equation, while the local unit cell problem is completely three dimensional which is subjected to the periodic boundary condition on axial surfaces as well as the traction free condition on circumferential surfaces of the unit cell. Thereafter, the variational formulation and finite element discretization of the unit cell problem are discussed. The effectiveness of the present formulation is illustrated by several numerical examples.

## References

References
1.
Fish
,
J.
ed., 2009,
Multiscale Methods: Bridging the Scales in Science and Engineering
,
Oxford University Press
,
New York
.
2.
Bensoussan
,
A.
,
Lions
,
J. L.
, and
Papanicolaou
,
G.
, 1978,
Asymptotic Analysis for Periodic Structures
,
North-Holland Publishing Company
,
Amsterdam
.
3.
Sanchez-Palebncia
,
E.
, and
Zaoui
,
A.
, eds., 1987,
Homogenization Techniques for Composite Media
,
Springer
,
Berlin
.
4.
Hassani
,
B.
, and
Hinton
,
E.
, 1998,
Homogenization and Structural Topology Optimization
,
Springer
,
Berlin
.
5.
Li
,
S.
, and
Wang
,
G.
, 2008,
Introduction to Micromechanics and Nanomechanics
,
World Scientific Pub.
,
Singapore
.
6.
Guedes
,
J. S.
, and
Kikuchi
,
N.
, 1989, “
Preprocessing and Postprocessing for Materials Based on the Homogenization Method With Adaptive Finite Element Methods
,”
Comput. Methods Appl. Mech. Eng.
,
83
, pp.
143
198
.
7.
Fish
,
J.
, and
Belsky
,
V.
, 1995, “
Multigrid Method for Periodic Heterogeneous Media: II. Multiscale Modeling and Quality Control in Multidimensional Case
,”
Comput. Methods Appl. Mech. Eng.
,
126
, pp.
17
38
.
8.
Ghosh
,
S.
,
Lee
,
K.
, and
Moorthy
,
S.
, 1995, “
Multiple Scale Analysis of Heterogeneous Elastic Structures Using Homogenization Theory and Voronoi Cell Finite Element Method
,”
Int. J. Solids Struct.
,
32
, pp.
27
62
.
9.
Takano
,
N.
,
Ohnishia
,
Y.
,
Zakoa
,
M.
, and
Nishiyabub
,
K.
, 2000, “
The Formulation of Homogenization Method Applied to Large Deformation Problem for Composite Materials
,”
Int. J. Solids Struct.
,
37
, pp.
6517
6535
.
10.
Wang
,
D.
,
Chen
,
J. S.
, and
Sun
,
L. Z.
, 2003, “
Homogenization of Magnetostrictive Particle-Filled Elastomers Using an Interface-Enriched Reproducing Kernel Particle Method
,”
Finite Elem. Anal. Design
,
39
, pp.
765
782
.
11.
Chen
,
J. S.
, and
Mehraeen
,
S.
, 2004, “
Variationally Consistent Multiscale Modeling and Homogenization of Stressed Grain Growth
,”
Comput. Methods Appl. Mech. Eng.
,
193
, pp.
1825
1848
.
12.
Zhang
,
H. W.
,
Zhang
,
S.
,
Bi
,
J. Y.
, and
Schrefler
,
B. A.
, 2006, “
Thermo-Mechanical Analysis of Periodic Multiphase Materials by a Multiscale Asymptotic Homogenization Approach
,”
Int. J. Numer. Methods Eng.
,
69
, pp.
87
113
.
13.
Miehe
,
C.
, and
Bayreuther
,
C. G.
, 2007, “
On Multiscale FE Analyses of Heterogeneous Structures: From Homogenization to Multigrid Solvers
,”
Int. J. Numer. Methods Eng.
,
71
, pp.
1135
1180
.
14.
Ozdemir
,
I.
,
Brekelmans
,
W. A. M.
, and
Geers
,
M.
, 2008, “
Computational Homogenization for Heat Conduction in Heterogeneous Solids
,”
Int. J. Numer. Methods Eng.
,
73
, pp.
185
204
.
15.
Oliveira
,
J. A.
,
Pinho-da-Cruza
,
J.
, and
Teixeira-Diasa
,
F.
, 2009, “
Asymptotic Homogenisation in Linear Elasticity. Part II: Finite Element Procedures and Multiscale Applications
,”
Comput. Mater. Sci.
,
45
, pp.
1081
1096
.
16.
Cao
,
L. Q.
,
Luo
,
J. L.
, and
Wang
,
C. Y.
, 2010, “
Multiscale Analysis and Numerical Algorithm for the Schrödinger Equations in Heterogeneous Media
,”
Appl. Math. Comput.
,
217
, pp.
3955
3973
.
17.
Fish
,
J.
, and
Kuznetsov
,
S.
, 2010, “
Computational Continua
,”
Int. J. Numer. Methods Eng.
,
84
, pp.
774
802
.
18.
Larsson
,
F.
,
Runessona
,
K.
, Saroukhania S., and
Vafadari
,
R.
, 2011, “
Computational Homogenization Based on a Weak Format of Micro-Periodicity for RVE-Problems
,”
Comput. Methods Appl. Mech. Eng.
,
200
, pp.
11
26
.
19.
Charalambakis
,
N.
, 2010, “
Homogenization Techniques and Micromechanics. A Survey and Perspectives
,”
ASME Appl. Mech. Rev.
,
63
, p.
030803
.
20.
Wang
,
D.
, and
Fang
,
L.
, 2010, “
A Multiscale Method for Analysis of Heterogeneous Thin Slabs With Irreducible Three Dimensional Microstructures
,”
Interact. Multiscale Mech.
,
3
, pp.
213
234
.
21.
Lee
,
C. Y.
, and
Yu
,
W.
, 2011, “
Variational Asymptotic Modeling of Composite Beams With Spanwise Heterogeneity
,”
Comput. Struct.
,
89
, pp.
1503
1511
.
22.
Hughes
,
T. J. R.
, 2000,
The Finite Element Method: Linear Static and Dynamic Finite Element Analysis
,
Dover Publications
,
Mineola, NY
.
You do not currently have access to this content.