We present a semi-analytical approach to study the energy dissipation in carbon nanotube (CNT) beam oscillators under gigahertz excitation. The energy dissipation properties are quantified by the quality factor (Q factor) and associated anelastic properties. Our study reveals that the Q factor is related to the tube radius through an inverse relation for both single walled CNTs (SWCNTs) and multiwalled CNTs (MWCNTs) beam oscillators. At frequency close to the resonance range, significant energy dissipation is observed due to the activation of phonon modes that serve as a major mechanism for energy dissipation in SWCNTs. For MWCNTs, a registration dependent potential (RDP) is introduced to study the effect of intertube registration. Interlayer friction arising from the π bond overlap is shown to contribute significantly to the additional energy dissipation. Based on the extensive simulation studies, an analytical formula for estimating the Q factors of MWCNTs is proposed. Validation of the analytical prediction with the available experimental data yields a good agreement and quantifies the roles of different factors contributing to the energy dissipation through anelastic relaxation.

References

References
1.
Qian
,
D.
,
Wagner
,
G. J.
,
Liu
,
W. K.
,
Yu
,
M. F.
, and
Ruoff
,
R. S.
, 2002, “
Mechanics of Carbon Nanotubes
,”
Appl. Mech. Rev.
,
55
(
6
), pp.
495
533
.
2.
Mahar
,
B.
,
Laslau
,
C.
,
Yip
,
R.
, and
Sun
,
Y.
, 2007, “
Development of Carbon Nanotube–Based Sensors—A Review
,”
IEEE Sens. J.
,
7
(
1–2
), pp.
266
284
.
3.
Zheng
,
Q. S.
, and
Jiang
,
Q.
, 2002, “
Multiwalled Carbon Nanotubes as Gigahertz Oscillators
,”
Phys. Rev. Lett.
,
88
(
4
), p.
045503
.
4.
Legoas
,
S. B.
,
Coluci
,
V. R.
,
Braga
,
S. F.
,
Coura
,
P. Z.
,
Dantas
,
S. O.
, and
Galvao
,
D. S.
, 2003, “
Molecular-Dynamics Simulations of Carbon Nanotubes as Gigahertz Oscillators
,”
Phys. Rev. Lett.
,
90
(
5
), p.
055504
.
5.
Li
,
C. Y.
, and
Chou
,
T. W.
, 2003, “
Single-Walled Carbon Nanotubes as Ultrahigh Frequency Nanomechanical Resonators
,”
Phys. Rev. B
,
68
(
7
), p.
073405
.
6.
Poncharal
,
P.
,
Wang
,
Z. L.
,
Ugarte
,
D.
, and
de Heer
,
W. A.
, 1999, “
Electrostatic Deflections and Electromechanical Resonances of Carbon Nanotubes
,”
Science
,
283
(
5407
), pp.
1513
1516
.
7.
Purcell
,
S. T.
,
Vincent
,
P.
,
Journet
,
C.
, and
Binh
,
V. T.
, 2002, “
Tuning of Nanotube Mechanical Resonances by Electric Field Pulling
,”
Phys. Rev. Lett.
,
89
(
27
), p.
276103
.
8.
Ciocan
,
R.
,
Gaillard
,
J.
,
Skove
,
M. J.
, and
Rao
,
A. M.
, 2005, “
Determination of the Bending Modulus of an Individual Multiwall Carbon Nanotube Using an Electric Harmonic Detection of Resonance Technique
,”
Nano Lett.
,
5
(
12
), pp.
2389
2393
.
9.
Yap
,
H. W.
,
Lakes
,
R. S.
, and
Carpick
,
R. W.
, 2008, “
Negative Stiffness and Enhanced Damping of Individual Multiwalled Carbon Nanotubes
,”
Phys. Rev. B
,
77
(
4
), p.
045423
.
10.
Pathak
,
S.
,
Cambaz
,
Z. G.
,
Kalidindi
,
S. R.
,
Swadener
,
J. G.
, and
Gogotsi
,
Y.
, 2009, “
Viscoelasticity and High Buckling Stress of Dense Carbon Nanotube Brushes
,”
Carbon
,
47
(
8
), pp.
1969
1976
.
11.
Lifshitz
,
R.
, and
Roukes
,
M. L.
, 2000, “
Thermoelastic Damping in Micro- and Nanomechanical Systems
,”
Phys. Rev. B
,
61
(
8
), pp.
5600
5609
.
12.
Houston
,
B. H.
,
Photiadis
,
D. M.
,
Marcus
,
M. H.
,
Bucaro
,
J. A.
,
Liu
,
X.
, and
Vignola
,
J. F.
, 2002, “
Thermoelastic Loss in Microscale Oscillators
,”
Appl. Phys. Lett.
,
80
(
7
), pp.
1300
1302
.
13.
Jiang
,
H.
,
Yu
,
M. F.
,
Liu
,
B.
, and
Huang
,
Y.
, 2004, “
Intrinsic Energy Loss Mechanisms in a Cantilevered Carbon Nanotube Beam Oscillator
,”
Phys. Rev. Lett.
,
93
(
18
), p.
185501
.
14.
Zhou
,
Z.
,
Qian
,
D.
, and
Yu
,
M. F.
, 2011, “
Energy Dissipation and Intrinsic Loss in Single Walled Carbon Nanotubes Due to Anelastic Relaxation
,”
J. Nanosci. Nanotechnol.
,
11
(
2
), pp.
1267
1272
.
15.
Zhou
,
Z.
,
Qian
,
D.
, and
Yu
,
M. F.
, 2011, “
A Computational Study on the Transversal Visco-Elastic Properties of Single Walled Carbon Nanotubes and Their Relation to the Damping Mechanism
,”
J. Comput. Theor. Nanosci.
,
8
(
5
), pp.
820
830
.
16.
Mohanty
,
P.
,
Harrington
,
D. A.
,
Ekinci
,
K. L.
,
Yang
,
Y. T.
,
Murphy
,
M. J.
, and
Roukes
,
M. L.
, 2002, “
Intrinsic Dissipation in High-Frequency Micromechanical Resonators
,”
Phys. Rev. B
,
66
(
8
), p.
085416
.
17.
Martin
,
M. J.
, and
Houston
,
B. H.
, 2007, “
Gas Damping of Carbon Nanotube Oscillators
,”
Appl. Phys. Lett.
,
91
(
10
), p.
103116
.
18.
Qi
,
H. J.
,
Teo
,
K. B. K.
,
Lau
,
K. K. S.
,
Boyce
,
M. C.
,
Milne
,
W. I.
,
Robertson
,
J.
, and
Gleason
,
K. K.
, 2003, “
Determination of Mechanical Properties of Carbon Nanotubes and Vertically Aligned Carbon Nanotube Forests Using Nanoindentation
,”
J. Mech. Phys. Solids
,
51
(
11–12
), pp.
2213
2237
.
19.
Pantano
,
A.
,
Parks
,
D. M.
, and
Boyce
,
M. C.
, 2004, “
Mechanics of Deformation of Single- and Multi-Wall Carbon Nanotubes
,”
J. Mech. Phys. Solids
,
52
(
4
), pp.
789
821
.
20.
Lee
,
E. H.
, and
Radok
,
J. R. M.
, 1960, “
The Contact Problem for Viscoelastic Bodies
,”
ASME J. Appl. Mech.
,
27
, pp.
438
444
.
21.
Brenner
,
D. W.
, 1990, “
Empirical Potential for Hydrocarbons for Use in Simulating the Chemical Vapor-Deposition of Diamond Films
,”
Phys. Rev. B
,
42
(
15
), pp.
9458
9471
.
22.
Kolmogorov
,
A. N.
, and
Crespi
,
V. H.
, 2000, “
Smoothest Bearings: Interlayer Sliding in Multiwalled Carbon Nanotubes
,”
Phys. Rev. Lett.
,
85
(
22
), pp.
4727
4730
.
23.
Kolmogorov
,
A. N.
, and
Crespi
,
V. H.
, 2005, “
Registry-Dependent Interlayer Potential for Graphitic Systems
,”
Phys. Rev. B
,
71
(
23
), p.
235415
.
24.
Qian
,
D.
,
Wagner
,
G. J.
, and
Liu
,
W. K.
, 2004, “
A Multiscale Projection Method for the Analysis of Carbon Nanotubes
,”
Comput. Methods Appl. Mech. Eng.
,
193
(
17–20
), pp.
1603
1632
.
25.
Byrd
,
R. H.
,
Lu
,
P. H.
,
Nocedal
,
J.
, and
Zhu
,
C. Y.
, 1995, “
A Limited Memory Algorithm for Bound Constrained Optimization
,”
SIAM J. Sci. Comput. (USA)
,
16
(
5
), pp.
1190
1208
.
26.
Girifalco
,
L. A.
, and
Lad
,
R. A.
, 1956, “
Energy of Cohesion, Compressibility, and the Potential Energy Functions of the Graphite System
,”
J. Chem. Phys.
,
25
(
4
), pp.
693
697
.
27.
Qian
,
D.
,
Liu
,
W. K.
,
Subramoney
,
S.
, and
Ruoff
,
R. S.
, 2003, “
Effect of Interlayer Potential on Mechanical Deformation of Multiwalled Carbon Nanotubes
,”
J. Nanosci. Nanotechnol.
,
3
(
1–2
), pp.
185
191
.
28.
Qian
,
D.
,
Liu
,
W. K.
, and
Ruoff
,
R. S.
, 2003, “
Load Transfer Mechanism in Carbon Nanotube Ropes
,”
Compos. Sci. Technol.
,
63
(
11
), pp.
1561
1569
.
29.
Charlier
,
J. C.
,
Gonze
,
X.
, and
Michenaud
,
J. P.
, 1994, “
First-Principles Study of the Stacking Effect on the Electronic-Properties of Graphite(s)
,”
Carbon
,
32
(
2
), pp.
289
299
.
30.
Lu
,
P.
,
Lee
,
H. P.
,
Lu
,
C.
, and
Chen
,
H. B.
, 2008, “
Thermoelastic Damping in Cylindrical Shells With Application to Tubular Oscillator Structures
,”
Int. J. Mech. Sci.
,
50
(
3
), pp.
501
512
.
31.
Yakobson
,
B. I.
,
Brabec
,
C. J.
, and
Bernholc
,
J.
, 1996, “
Nanomechanics of Carbon Tubes: Instabilities Beyond Linear Response
,”
Phys. Rev. Lett.
,
76
(
14
), pp.
2511
2514
.
32.
Yu
,
M. F.
,
Kowalewski
,
T.
, and
Ruoff
,
R. S.
, 2000, “
Investigation of the Radial Deformability of Individual Carbon Nanotubes Under Controlled Indentation Force
,”
Phys. Rev. Lett.
,
85
(
7
), pp.
1456
1459
.
33.
Li
,
C. Y.
, and
Chou
,
T. W.
, 2004, “
Elastic Properties of Single-Walled Carbon Nanotubes in Transverse Directions
,”
Phys. Rev. B
,
69
(
7
),
073401
.
34.
Nowick
,
A. S.
, and
Berry
,
B. S.
, 1972,
Anelastic Relaxation in Crystalline Solids
,
Academic Press
,
New York
.
35.
Cumings
,
J.
, and
Zettl
,
A.
, 2000, “
Low-Friction Nanoscale Linear Bearing Realized From Multiwall Carbon Nanotubes
,”
Science
,
289
(
5479
), pp.
602
604
.
36.
Guo
,
W. L.
,
Guo
,
Y. F.
,
Gao
,
H. J.
,
Zheng
,
Q. S.
, and
Zhong
,
W. Y.
, 2003, “
Energy Dissipation in Gigahertz Oscillators From Multiwalled Carbon Nanotubes
,”
Phys. Rev. Lett.
,
91
(
12
), p.
125501
.
37.
Wang
,
Z. L.
,
Poncharal
,
P.
, and
de Heer
,
W. A.
, 2000, “
Nanomeasurements of Individual Carbon Nanotubes by In Situ TEM
,”
Pure Appl. Chem.
,
72
(
1–2
), pp.
209
219
.
38.
Zener
,
C.
, 1937, “
Internal Friction in Solids I. Theory and Internal Friction in Reeds
,”
Phys. Rev.
,
52
, pp.
230
235
.
39.
Zener
,
C.
, 1938, “
Internal Friction in Solids II. General Theory of Thermoelastic Internal Friction
,”
Phys. Rev.
,
53
, pp.
90
99
.
40.
Papadakis
,
S. J.
,
Hall
,
A. R.
,
Williams
,
P. A.
,
Vicci
,
L.
,
Falvo
,
M. R.
,
Superfine
,
R.
, and
Washburn
,
S.
, 2004, “
Resonant Oscillators With Carbon-Nanotube Torsion Springs
,”
Phys. Rev. Lett.
,
93
(
14
), p.
146101
.
41.
Sazonova
,
V.
,
Yaish
,
Y.
,
Ustunel
,
H.
,
Roundy
,
D.
,
Arias
,
T. A.
, and
McEuen
,
P. L.
, 2004, “
A Tunable Carbon Nanotube Electromechanical Oscillator
,”
Nature
,
431
(
7006
), pp.
284
287
.
42.
Peng
,
H. B.
,
Chang
,
C. W.
,
Aloni
,
S.
,
Yuzvinsky
,
T. D.
, and
Zettl
,
A.
, 2006, “
Ultrahigh Frequency Nanotube Resonators
,”
Phys. Rev. Lett.
,
97
(
8
), p.
087203
.
43.
Garcia-Sanchez
,
D.
,
San Paulo
,
A.
,
Esplandiu
,
M. J.
,
Perez-Murano
F.
,
Forro
,
L.
,
Aguasca
,
A.
, and
Bachtold
,
A.
, 2007, “
Mechanical Detection of Carbon Nanotube Resonator Vibrations
,”
Phys. Rev. Lett.
,
99
(
8
), p.
085501
.
You do not currently have access to this content.