This study introduces a simplified micromechanical model for analyzing a combined viscoelastic–viscoplastic response of unidirectional fiber reinforced polymer (FRP) composites. The micromechanical model is derived based on a unit-cell model consisting of fiber and matrix subcells. In this micromechanical model, a limited spatial variation of the local field variables in the fiber and matrix subcells is considered in predicting the overall time-dependent response of composites. The constitutive model for the polymer matrix is based on Schapery’s viscoelastic and Perzyna’s viscoplastic models. An incremental stress–strain relation is considered in solving the time-dependent and inelastic response. A linearized prediction and iterative corrector scheme are formulated to minimize errors from the linearization within the incremental stress–strain relation such that both the micromechanical constraints and the nonlinear constitutive equations are satisfied. The goal is to provide the accurate effective stress–strain relations of the composites and the corresponding viscoelastic and viscoplastic deformation in the polymeric matrix. The micromechanical model is verified by comparing the time-dependent response of the glass FRP composites having several off-axis fiber orientations with experimental data available in the literature.

References

References
1.
Megnis
,
M.
, and
Varna
,
J.
, 2003, “
Nonlinear Viscoelastic, Viscoplastic Characterization of Unidirectional GF/EP Composite
,”
Mech. Time-Depend. Mater.
,
7
, pp.
269
290
.
2.
Hashin
,
Z.
, 1966, “
Viscoelastic Fiber Reinforced Materials
,”
AIAA J.
4
, pp.
1411
1417
.
3.
Hashin
,
Z.
, 1970, “
Complex Moduli of Viscoelastic Composites-2 Fiber Reinforced Materials
,”
Int. J Solid Struct.
,
68
, pp.
797
807
.
4.
Sadkin
,
Y.
, and
Aboudi
,
J.
, 1989, “
Viscoelastic Behavior of Thermo-Rheologically Complex Resin Matrix Composites
,”
Compos. Sci. Technol.
,
36
, pp.
351
365
.
5.
Yancey
,
R. N.
, and
Pindera
,
M. J.
, 1990, “
Micromechanical Analysis of the Creep Response of Unidirectional Composites
,”
ASME J. Eng. Mater. Technol.
,
112
, pp.
157
163
.
6.
Fisher
,
F. T.
, and
Brinson
,
L. C.
, 2001, “
Viscoelastic Interphases in Polymer–Matrix Composites: Theoretical Models and Finite Element Analysis
,”
Compos. Sci. Technol.
,
61
, pp.
731
748
.
7.
Haj-Ali
,
R. M.
, and
Muliana
,
A. H.
, 2004, “
A Multi-Scale Constitutive Framework for the Nonlinear Analysis of Laminated Composite Materials and Structures
,”
Int. J. Solids Struct.
,
41
, pp.
3461
3490
.
8.
Aboudi
,
J.
, 2005, “
Micromechanically Established Constitutive Equations for Multiphase Materials With Viscoelastic-Viscoplastic Phases
,”
Mech. Time-Depend. Mater.
,
9
, pp.
121
145
.
9.
Frank
,
G. J.
, and
Brockman
,
R. A.
, 2001, “
A Viscoelastic-Viscoplastic Constitutive Model for Glassy Polymers
,”
Int. J. Solids Struct.
,
38
, pp.
5149
5164
.
10.
Matsuda
,
T.
, and
Ohno
,
N.
, 2011, “
Predicting the Elastic-Viscoplastic and Creep of Polymer Matrix Composites Using Homogenization Theory
,”
Creep and Fatigue in Composites
, ed.
R. M.
Guedes
,
Woodhead Publishing
,
Cambridge, UK
, pp.
70
112
.
11.
Schapery
,
R. A.
, 1969, ”
On the Characterization of Nonlinear Viscoelastic Materials
,”
Polymer Eng. Sci.
,
9
(
4
), pp.
295
310
.
12.
Perzyna
,
P.
, 1966, “
Fundamental Problems in Viscoplasticity
,”
Adv. Appl. Mech.
,
9
, pp.
243
377
.
13.
Perzyna
,
P.
, 1971, “
Thermodynamic of Rheological Materials With Internal Changes
,”
J. Mech.
,
10
, pp.
391
408
.
14.
Bathe
,
K. J.
, 1996,
Finite Element Procedure
,
Prentice-Hall
,
Englewood Cliffs, N. J
.
15.
Simo
,
J. C.
, and
Hughes
,
T.
,
J. R.
, 1998,
Computational Inelasticity
,
Springer-Verlag, NY
.
16.
Kim
,
J. S.
, and
Muliana
,
A. H.
, 2009, “
A Time-Integration Method for the Viscoelastic-Viscoplastic Analyses of Polymers and Finite Element Implementation
,”
Int. J. Numer. Mech. Eng.
,
79
, pp.
550
575
.
17.
Muliana
,
A.
, and
Sawant
,
S.
, 2009, “
Response of Viscoelastic Polymer Composites With Temperature and Time-Dependent Constituents
,”
Acta Mech.
,
204
, pp.
155
173
.
18.
Megnis
,
M.
, and
Varna
,
J.
, 2003, “
Micromechanics Based Modeling of Nonlinear Viscoplastic Response of Unidirectional Composite
,”
Compos. Sci. Technol.
,
63
, pp.
19
31
.
19.
Matweb 1997, from http://www.matweb.com, retrieved Sep 17, 2011.
20.
Kim
,
J. S.
, and
Muliana
,
A.
, 2010, “
A Combined Viscoelastic-Viscoplastic Behavior of Particle Reinforced Composites
,”
Int. J. Solids Struct.
,
47
, pp.
580
594
.
21.
Varna
,
J
,,
Joffe
,
R
,,
Akshantala
,
N. V.
, and
Talreja
,
R.
, 1999, “
Damage in Composite Laminates With Off-Axis Plies
,”
Compos. Sci. Technol.
,
59
, pp.
2139
2147
.
22.
Varna
,
J.
,
Akshantala
,
N. V.
, and
Talreja
,
R.
, 1997, “
Stiffness Changes in Laminates Caused By Intralaminar Cracks and Shear Deformation
,”
ASME Int. Mech. Eng. Cong.
,
80
, pp.
165
168
.
23.
Lai
,
J.
, and
Bakker
,
A.
, 1995, “
An Integral Constitutive Equation for Nonlinear Plasto-Viscoelastic Behavior of High-Density Polyethylene
,”
Polymer Eng. Sci.
,
35
, pp.
1339
1347
.
You do not currently have access to this content.