The mechanics of a small-scaled bilayer film-substrate system subject to temperature variation is studied. The modified couple stress theory is employed to take account of the size effects that are usually observed in small-scaled structures. In addition, the effect of weak bonding between the film and substrate is examined by using a linear slip-type model. Exact solutions are derived and the closed-form expressions for residual thermal stress and curvature of the system are given. Modified Stoney’s formulas are also presented for the bilayer system with perfect interface or imperfect interface between the film and the substrate.

References

References
1.
Alexopoulos
,
P. S.
, and
O’sullivan
,
T. C.
, 1990, “
Mechanical Properties of Thin Films
,”
Annu. Rev. Mater. Sci.
,
20
, pp.
391
420
.
2.
Lumelsky
,
V. J.
,
Shur
,
M. S.
, and
Wagner
,
S.
, 2001, “
Sensitive Skin
,”
IEEE Sens J.
,
1
, pp.
41
51
.
3.
Nix
,
W.
, 1989. “
Mechanical Properties of Thin Films
,”
Metall. Mater. Trans. A
,
20
, pp.
2217
2245
.
4.
Freund
,
L. B.
,
Suresh
,
S.
, 2004,
Thin Film Materials: Stress, Defect Formation and Surface Evolution
,
Cambridge University Press
,
Cambridge, United Kingdom
.
5.
Stoney
,
G. G.
, 1909, “
The Tension of Metallic Films Deposited by Electrolysis
,”
Proc. R. Soc. London, Ser. A.
,
82
, pp.
172
175
.
6.
Freund
,
L. B.
,
Floro
,
J. A.
, and
Chason
,
E.
, 1999, “
Extensions of the Stoney Formula for Substrate Curvature to Configurations With Thin Substrates or Large Deformation
,”
Appl. Phys. Lett.
,
74
, pp.
1987
1989
.
7.
Huang
,
Y.
, and
Rosakis
,
A. J.
, 2005, “
Extension of Stoney’s Formula to Non-Uniform Temperature Distributions in Thin Film/Substrate Systems. The Case of Radial Symmetry
,”
J. Mech. Phys. Solids
,
53
, pp.
2483
2500
.
8.
Huang
,
S.
, and
Zhang
,
X.
, 2006, “
Extension of the Stoney Formula for Film-Substrate Systems With Gradient Stress for MEMS Applications
,”
J. Micromech. Microeng.
,
16
, pp.
382
389
.
9.
Zhang
,
Y.
, and
Zhao
,
Y.
, 2006, “
Applicability Range of Stoney’s Formula and Modified Formulas for a Film/Substrate Bilayer
,”
J. Appl. Phys.
,
99
, p.
053513
.
10.
Hu
,
Y. Y.
, and
Huang
,
W. M.
, 2004, “
Elastic and Elastic-Plastic Analysis of Multilayer Thin Films: Close-Form Solution
,”
J. Appl. Phys.
,
96
, pp.
4154
4160
.
11.
Chen
,
W. T.
, and
Nelson
,
C. W.
, 1979, “
Thermal Stress in Bonded Joints
,”
IBM J. Res. Dev.
,
23
, pp.
179
188
.
12.
Suhir
,
E.
, 1986, “
Stresses in Bi-Metal Thermostats
,”
J. Appl. Mech.
,
53
, pp.
657
660
.
13.
Suhir
,
E.
, 1989, “
Interfacial Stresses in Bimetal Thermostats
,”
J. Appl. Mech.
,
56
, pp.
595
600
.
14.
Cheng
,
Z. Q.
,
Jemah
,
A. K.
, and
Williams
,
F. W.
, 1996, “
Theory for Multilayered Anisotropic Plates With Weakened Interfaces
,”
J. Appl. Mech.
,
63
, pp.
1019
1026
.
15.
Chen
,
W. Q.
,
Wang
,
Y. F.
,
Cai
,
J. B.
, and
Ye
,
G. R.
, 2004, “
Three Dimensional Analysis of Cross-Ply Laminated Cylindrical Panels With Weak Interfaces
,”
Int. J. Solids Struc.
,
41
, pp.
2429
2446
.
16.
Chen
,
W. Q.
,
Ying
,
J.
,
Cai
,
J. B.
, and
Ye
,
G. R.
, 2004, “
Benchmark Solution of Laminated Beams With Bonding Imperfections
,”
AIAA J.
,
42
, pp.
426
429
.
17.
Chen
,
W. Q.
, and
Lee
,
K. Y.
, 2004, “
Three-Dimensional Exact Analysis of Angle-Ply Laminates in Cylindrical Bending With Interfacial Damage via State Space Method
,”
Compos. Struc.
,
64
, pp.
275
283
.
18.
Newmark
,
N. M.
,
Siest
,
C. P.
, and
Viest
,
I. M.
, 1952, “
Tests and Analysis of Composite Beams With Incomplete Interaction
,”
Proc. Soc. Exp. Stress Anal.
,
9
, pp.
75
92
.
19.
Girhammar
,
U. A.
, and
Gopu
,
V. K. A.
, 1993, “
Composite Beam-Columns With Interlayer Slip—Exact Analysis
,”
J. Struct. Eng.
,
119
, pp.
1265
1282
.
20.
Chen
,
W. Q.
,
Wu
,
Y. F.
, and
Xu
,
R. Q.
, 2007, “
State Space Formulation for Composite Beam-Columns With Partial Interaction
,”
Compos. Sci. Technol.
,
67
, pp.
2500
2512
.
21.
Shen
,
X. D.
,
Chen
,
W. Q.
,
Wu
,
Y. F.
, and
Xu
,
R. Q.
, 2011, “
Dynamic Analysis of Partial-Interaction Composite Beams
,”
Compos. Sci. Technol.
,
71
, pp.
1286
1294
.
22.
Liu
,
D. Y.
, and
Chen
,
W. Q.
, 2010, “
Thermal Stresses in Bilayer Systems With Weak Interface
,”
Mech. Res. Commun.
,
37
, pp.
520
524
.
23.
Lam
,
D. C. C.
,
Yang
,
F.
,
Chong
,
A. C. M.
,
Wang
,
J.
, and
Tong
,
P.
, 2003, “
Experiments and Theory in Strain Gradient Elasticity
,”
J. Mech. Phys. Solids
,
51
, pp.
1477
1508
.
24.
McFarland
,
A. W.
, and
Colton
,
J. S.
, 2005, “
Role of Material Microstructure in Plate Stiffness With Relevance to Micro Cantilever Sensors
,”
J. Micromech. Microeng.
,
15
, pp.
1060
1067
.
25.
Papargyri-Beskou
,
S.
,
Tsepoura
,
K. G.
,
Polyzos
,
D.
,
Beskos
,
D. E.
, 2003, “
Bending and Stability Analysis of Gradient Elastic Beams
,”
Int. J. Solids Struct.
,
40
, pp.
385
400
.
26.
Eringen
,
A. C.
, 1972, “
Linear Theory of Nonlocal Elasticity and Dispersion of Plane Waves
,”
Int. J. Eng. Sci.
,
10
, pp.
425
435
.
27.
Eringen
,
A. C.
, 1972, “
Nonlocal Polar Elastic Continua
,”
Int. J. Eng. Sci.
,
10
, pp.
1
16
.
28.
Eringen
,
A. C.
, and
Edelen
,
D. B.
, 1972, “
On Nonlocal Elasticity
,”
Int. J. Eng. Sci.
,
10
, pp.
233
248
.
29.
Eringen
,
A. C.
, 1973, “
Linear Theory of Nonlocal Microelasticity and Dispersion of Plane Waves
,”
Lett. Appl. Eng. Sci.
,
1
, pp.
129
146
.
30.
Eringen
,
A. C.
, 1983, “
On Differential Equations of Nonlocal Elasticity and Solutions of Screw Dislocation and Surface Waves
,”
J. Appl. Phys.
,
54
, pp.
4703
4710
.
31.
Eringen
,
A. C.
, 1973, “
Theory of Nonlocal Electromagnetic Elastic Solids
,”
J. Math. Phys.
,
14
, pp.
733
740
.
32.
Eringen
,
A. C.
, 1974, “
Theory of Nonlocal Thermoelasticity
,”
Int. J. Eng. Sci.
,
12
, pp.
1063
1077
.
33.
Eringen
,
A. C.
, 1974, “
Memory-Dependent Nonlocal Thermoelastic Solids
,”
Lett. Appl. Eng. Sci.
,
2
,
145
149
.
34.
Eringen
,
A. C.
, 1984, “
Theory of Nonlocal Piezoelectricity
,”
J. Math. Phys.
,
25
, pp.
717
727
.
35.
Eringen
,
A. C.
, 2002, “
Nonlocal Continuum Field Theories
,” Springer, New York.
36.
Peddieson
,
J
,
Buchanan
,
G. R.
, and
McNitt
,
R. P.
, 2003, “
Application of Nonlocal Continuum Models to Nanotechnology
,”
Int. J. Eng. Sci.
,
41
, pp.
305
312
.
37.
Wang
,
Q.
, 2005, “
Wave Propagation in Carbon Nano Tubes via Non Local Continuum Mechanics
,”
J. Appl. Phys.
,
98
, pp.
1
6
.
38.
Lim
,
C. W.
, 2009, “
Equilibrium and Static Deflection for Bending of a Nonlocal Nanobeam
,”
Adv. Vib. Eng.
,
8
, pp.
277
300
.
39.
Lim
,
C. W.
, 2010, “
On the Truth of Nanoscale for Nanobeams Based on Nonlocal Elastic Stress Field Theory: Equilibrium, Governing Equation and Static Deflection
,”
Appl. Math. Mech.
,
31
, pp.
37
54
.
40.
Lim
,
C. W.
, 2010, “
Is a Nanorod (or Nanotube) With a Lower Young’s Modulus Stiffer? Is not Young’s Modulus a Stiffness Indicator?
Sci. China, Ser. G
,
53
, pp.
712
724
.
41.
Hossein
,
E.
, and
Mohammad
,
A. H.
, 2011, “
Analytical Approaches for Vibration Analysis of Multi-Walled Carbon Nanotubes Modeled as Multiple Nonlocal Euler Beams
,”
Physica E (Amsterdam)
,
44
, pp.
270
285
.
42.
Toupin
,
R. A.
, 1962, “
Elastic Materials With Couple Stresses
,”
Arch. Ration. Mech. Anal.
,
11
, pp.
385
414
.
43.
Mindlin
,
R. D.
, and
Tiersten
,
H. F.
, 1962, “
Effects of Couple Stresses in Linear Elasticity
,”
Arch. Ration. Mech. Anal.
,
11
, pp.
415
48
.
44.
Mindlin
,
R. D.
, 1963, “
Influence of Couple Stresses on Stress Concentrations
,”
Exp. Mech.
,
3
, pp.
1
7
.
45.
Koiter
,
W. T.
, 1964, “
Couple-Stresses in the Theory of Elasticity: I and II
,”
Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, Series B
,
67
, pp.
17
44
.
46.
Yang
,
F.
,
Chong
,
A. C. M.
,
Lam
,
D. C. C.
,
Tong
,
P.
, 2002, “
Couple Stress Based Strain Gradient Theory for Elasticity
,”
Int. J. Solids Struct.
,
39
, pp.
2731
2743
.
47.
Park
,
S. K.
,
Gao
,
X. L.
, 2008, “
Variational Formulation of A Modified Couple Stress Theory and Its Application to A Simple Shear Problem
,”
Z. Angew. Math. Phys.
,
59
, pp.
904
917
.
48.
Park
,
S. K.
and
Gao
,
X. L.
, 2006, “
Bernoulli-Euler Beam Model Based on A Modified Couple Stress Theory
,”
J. Micromech. Microeng.
,
16
, pp.
2355
2359
.
49.
Ma
,
H. M.
,
Gao
,
X. L.
, and
Reddy
,
J. N.
, 2008, “
A Microstructure Dependent Timoshenko Beam Model Based on A Modified Couple Stress Theory
,”
J. Mech. Phys. Solids
,
56
, pp.
3379
3391
.
50.
Ma
,
H. M.
,
Gao
,
X. L.
, and
Reddy
,
J. N.
, 2011, “
A Non-Classical Mindlin Plate Model Based on A Modified Couple Stress Theory
,”
Acta Mech.
,
220
, pp.
217
235
.
You do not currently have access to this content.