A general solution for the stress and strain fields in a three-layer composite tube subjected to internal and external pressures and temperature changes is first derived using thermo-elasticity. The material in each layer is treated as orthotropic, and the composite tube is regarded to be in a generalized plane strain state. A three-layer ZRY4-SiCf/SiC-SiC composite cladding tube under a combined pressure and thermal loading is then analyzed and optimized by applying the general solution. The effects of temperature changes, applied pressures, and layer thickness on the mechanical behavior of the tube are quantitatively studied. The von Mises’ failure criterion for isotropic materials and the Tsai-Wu’s failure theory for composites are used, respectively, to predict the failure behavior of the monolithic ZRY4 (i.e., Zircaloy-4) inner layer and SiC outer layer and the composite SiCf/SiC core layer of the three-layer tube. The numerical results reveal that the maximum radial and circumferential stresses in each layer always occur on the bonding surfaces. By adjusting the thickness of each layer, the effective stress in the three-layer cladding tube under the prescribed thermal-mechanical loading can be changed, thereby making it possible to optimally design the cladding tube.

References

References
1.
Onder
,
A.
,
Sayman
,
O.
,
Dogan
,
T.
, and
Tarakcioglu
,
N.
, 2009, “
Burst Failure Load of Composite Pressure Vessels
,”
Compos. Struct.
,
89
, pp.
159
166
.
2.
Akcay
,
I. H.
, and
Kaynak
,
I.
, 2005, “
Analysis of Multilayered Composite Cylinders Under Thermal Loading
,”
J. Reinf. Plast. Compos.
,
24
, pp.
1169
1179
.
3.
Sayman
,
O.
, 2005, “
Analysis of Multi-Layered Composite Cylinders Under Hygrothermal Loading
,”
Composites: Part A
,
36
, pp.
923
933
.
4.
Xia
,
M.
,
Takayanagi
,
H.
, and
Kemmochi
,
K.
, 2001, “
Analysis of Multi-Layered Filament Wound Composite Pipes Under Internal Pressure
,”
Compos. Struct.
,
53
, pp.
483
491
.
5.
You
,
L. H.
, 2003, “
Thermal Stress Distributions in Axisymmetrically Orthotropic Fiber-Reinforced Composites With Multilayered Interfaces
,”
J. Mater. Sci.
,
38
, pp.
2963
2970
.
6.
Pimshtein
,
P. G.
, and
Zhukova
,
V. N.
, 1977, “
Computing the Stresses in a Multilayered Cylinder With Consideration Given to the Characteristics of Layer Contact
,”
Strength Mater.
,
9
, pp.
588
595
.
7.
Lekhnitskii
,
S. G.
, 1981,
Theory of Elasticity of an Anisotropic Body
,
Mir Publishers
,
Moscow
.
8.
Dmitriev
,
S. V.
,
Yoshikawa
,
N.
, and
Mulyukov
,
R. R.
, 2010, “
Rapid Change of Stresses in Thickness Direction in Long Orthotropic Tube Under Internal Pressure and Axial Load
,”
Acta Mech.
,
211
, pp.
323
336
.
9.
Adali
,
S.
,
Summers
,
E. B.
, and
Verijenko
,
V. E.
, 1993, “
Optimisation of Laminated Cylindrical Pressure Vessels Under Strength Criterion
,”
Compos. Struct.
,
25
, pp.
305
312
.
10.
Parnas
,
L.
, and
Katırcı
,
N.
, 2002, “
Design of Fiber-Reinforced Composite Pressure Vessels Under Various Loading Conditions
,”
Compos. Struct.
,
58
, pp.
83
95
.
11.
Béakou
,
A.
, and
Mohamed
,
A.
, 2001, “
Influence of Variable Scattering on the Optimum Winding Angle of Cylindrical Laminated Composites
,”
Compos. Struct.
,
53
, pp.
287
293
.
12.
Özıık
,
M. N.
, 1993,
Heat Conduction
,
2nd ed.
,
John Wiley & Sons
,
New York
.
13.
Chou
,
P. C.
, and
Pagano
,
N. J.
, 1967,
Elasticity: Tensor, Dyadic, and Engineering Approaches
,
Van Nostrand
,
Princeton, NJ.
14.
Gao
,
X.-L.
, 2003, “
Elasto-Plastic Analysis of an Internally Pressurized Thick-Walled Cylinder Using a Strain Gradient Plasticity Theory
,”
Int. J. Solids Struct.
,
40
, pp.
6445
6455
.
15.
Gao
,
X.-L.
, 2007, “
Strain Gradient Plasticity Solution for an Internally Pressurized Thick-Walled Cylinder of an Elastic Linear-Hardening Material
,”
Z. Angew. Math. Phys.
,
58
, pp.
161
173
.
16.
Jones
,
R. M.
, 1999,
Mechanics of Composite Materials
,
2nd ed.
,
Taylor & Francis
,
New York
.
17.
Raffray
,
A. R.
,
Jones
,
R.
,
Aiello
,
G.
,
Billone
,
M.
,
Giancarli
,
L.
,
Golfier
,
H.
,
Hasegawa
,
A.
,
Katoh
,
Y.
,
Kohyama
,
A.
,
Nishio
,
S.
,
Riccardi
,
B.
, and
Tillack
,
M. S.
, 2001, “
Design and Material Issues for High Performance SiCf/SiC-Based Fusion Power Cores
,”
Fusion Eng. Des.
,
55
, pp.
55
95
.
18.
Snead
,
L. L.
,
Nozawa
,
T.
,
Katoh
,
Y.
,
Byun
,
T.-S.
,
Kondo
,
S.
, and
Petti
,
D. A.
, 2007, “
Handbook of SiC Properties for Fuel Performance Modeling
,”
J. Nucl. Mater.
,
371
, pp.
329
377
.
19.
Hollenberg
,
G. W.
,
Henager
,
C. H.
, Jr.
,
Youngblood
,
G. E.
,
Trimble.
D. J.
,
Simonson
,
S. A.
,
Newsome
,
G. A.
, and
Lewis
,
E.
, 1995, “
The Effect of Irradiation on the Stability and Properties of Monolithic Silicon Carbide and SiCf/SiC Composites up to 25 dpa
,”
J. Nucl. Mater.
,
219
, pp.
70
86
.
20.
Ueda
,
S.
,
Nishio
,
S.
,
Seki
,
Y.
,
Kurihara
,
R.
,
Adachi
,
J.
,
Yamazaki
,
S.
, and DREAM Design Team, 1998, “
A Fusion Power Reactor Concept Using SiC/SiC Composites
,”
J. Nucl. Mater.
,
258–263
, pp.
1589
1593
.
21.
Jones
,
R. H.
,
Giancarli
,
L.
,
Hasegawa
,
A.
,
Katoh
,
Y.
,
Kohyama
,
A.
,
Riccardi
,
B.
,
Snead
,
L. L.
, and
Weber
,
W. J.
, 2002, “
Promise and Challenges of SiCf/SiC Composites for Fusion Energy Applications
,”
J. Nucl. Mater.
,
307–311
, pp.
1057
1072
.
22.
Sha
,
J.
,
Kohyama
,
A.
, and
Katoh
,
Y.
, 2003, “
Recent Progresses and Critical Issues of SiCf/SiC Composite Under Irradiation Environments
,”
Plasma Sci. Technol.
,
5
, pp.
1965
1977
.
23.
Hannerz
,
K.
, and
Vesterlund
,
G.
, 1975, “
Zircaloy Cladding Mechanical Properties
,”
Nucl. Eng. Des.
,
33
, pp.
205
218
.
24.
Hegeman
,
J. B. J.
,
van der Laan
,
J. G.
,
van Kranenburg
,
M.
,
Jong
,
M.
,
d’Hulst
,
D.
, and
ten Pierick
,
P.
, 2005, “
Mechanical and Thermal Properties of SiCf/SiC Composites Irradiated With Neutrons at High Temperatures
,”
Fusion Eng. Des.
,
75–79
, pp.
789
793
.
25.
Link
,
T. M.
,
Koss
,
D. A.
, and
Motta
,
A. T.
, 1998, “
Failure of Zircaloy Cladding Under Transverse Plane-Strain Deformation
,”
Nucl. Eng. Des.
,
186
, pp.
379
394
.
26.
Howe
,
L. M.
, and
Thomas
,
W. R.
, 1960, “
The Effect of Neutron Irradiation on the Tensile Properties of Zircaloy-2
,”
J. Nucl. Mater.
,
2
, pp.
248
260
.
27.
Pickman
,
D. O.
, 1972, “
Properties of Zircaloy Cladding
,”
Nucl. Eng. Des.
,
21
, pp.
212
236
.
28.
Murabayashi
,
M.
,
Tanaka
,
S.
, and
Takahashi
,
Y.
, 1975, “
Thermal Conductivity and Heat Capacity of Zircaloy-2, -4, and Unalloyed Zirconium
,”
J. Nucl. Sci. Technol.
,
12
, pp.
661
662
.
29.
Desquines
,
J.
,
Cazalis
,
B.
,
Bernaudat
,
C.
,
Poussard
,
C.
,
Averty
,
X.
, and
Yvon
,
P.
, 2005, “
Mechanical Properties of Zircaloy-4 PWR Fuel Cladding With Burnup 54–64MWd/kgU and Implications for RIA Behavior
,”
J. ASTM Int.
,
2
(
6
), pp.
1
20
.
30.
Daniel
,
I. M.
, and
Ishai
,
O.
, 1994,
Engineering Mechanics of Composite Materials
,
Oxford University Press
,
Oxford
.
31.
Soden
,
P. D.
,
Kaddour
,
A. S.
, and
Hinton
,
M. J.
, 2004, “
Recommendations for Designers and Researchers Resulting From the World-Wide Failure Exercise
,”
Compos. Sci. Technol.
,
64
, pp.
589
604
.
32.
Hart-Smith
,
L. J.
, 2010, “
Application of the Strain Invariant Failure Theory (SIFT) to Metals and Fiber-Polymer Composites
,”
Philos. Mag.
,
90
, pp.
4263
4331
.
33.
Yeh
,
H.-Y.
,
Murphy
,
H. C.
, and
Yeh
,
H.-L.
, 2009, “
An Investigation of Failure Criterion for New Orthotropic Ceramic Matrix Composite Materials
,”
J. Reinf. Plast. Compos.
,
28
, pp.
441
459
.
34.
Aiello
,
G.
,
Giancarli
,
L.
,
Golfier
,
H.
, and
Maire
,
J.-F.
, 2003, “
Modeling of Mechanical Behavior and Design Criteria for SiCf/SiC Composite Structures in Fusion Reactors
,”
Fusion Eng. Des.
,
65
, pp.
77
88
.
35.
Tsai
,
S. W.
, and
Wu
,
E. M.
, 1971, “
A General Theory of Strength for Anisotropic Materials
,”
J. Compos. Mater.
,
5
, pp.
58
80
.
36.
Wu
,
S.
,
Cheng
,
L.
,
Zhang
,
J.
,
Zhang
,
L.
,
Luan
,
X.
,
Mei
,
H.
, and
Fang
,
P.
, 2006, “
Tension–Tension Fatigue Damage Characteristics of a 3D SiC/SiC Composite in H2O–O2–Ar Environment at 1300 °C
,”
Mater. Sci. Eng., A
,
435–436
, pp.
412
417
.
37.
Schwenk
,
E. B.
,
Wheeler
,
K. R.
,
Shearer
,
G. D.
, and
Webster
,
R. T.
, 1978, “
Poisson’s Ratio in Zircaloy-4 Between 24 °C and 316 °C
,”
J. Nucl. Mater.
,
73
, pp.
129
131
.
38.
ATI Wah Chang, 2003, “
Reactor Grade Zirconium Alloys for Nuclear Waste Disposal—Technical Data Sheet
,” (see http://www.wahchanglabs.com/pdf/zirconium/0009.pdf).
39.
Bertolino
,
G.
,
Meyer
,
G.
, and
Perez Ipiña
,
J.
, 2002, “
Mechanical Properties Degradation at Room Temperature in ZRY-4 by Hydrogen Brittleness
,”
Mater. Res.
,
5
, pp.
125
129
.
You do not currently have access to this content.