Directionally solidified superalloys have been extensively used as turbine blade materials to improve creep-rupture and thermal fatigue performances. Turbine blades are subjected to fluctuant temperature changes. Precise knowledge of material behavior at various temperatures is essential in design and service life evaluation of turbine blades. In this study, coaxial model is extended to consider temperature dependent engineering elastic constants. Although no existing theory predicts the temperature dependence engineering elastic constants over large range of temperature, these constants could be estimated based upon very limited experimental data of direction solidification specimens and other temperature dependent materials data. Excellent agreement is observed between estimations and experimental data of 45 deg and 90 deg off directionally solidified direction specimens.

References

References
1.
McLean
,
M.
, 1983,
Directionally Solidification Materials for High Temperature Service
,
The Metals Society
,
London
.
2.
Sims
,
C. T.
, and
Hagel
,
W. C.
, 1972,
The Superalloys
,
John Wiley & Sons
,
New York
.
3.
Sims
,
C. T.
,
Stoloff
,
N. S.
, and
Hagel
,
W. C.
, 1987,
Superalloys II
,
John Wiley & Sons
,
New York
.
4.
Donachie
,
M. J.
, and
Donachie
,
S. J.
, 2002,
Superalloys A Technical Guide
,
2nd ed.
,
ASM International
,
Materials Park, OH
.
5.
GE
, 1992, “
MS9001FA Design and Performance
,”
Gas Turbine World
,
22
, pp.
34
35
.
6.
Wells
,
C. H.
, 1967, “
The Elastic Constants of a Directionally-Solidified, Nickel-Base Superalloy, Mar M-200
,”
Trans. ASM
,
60
, pp.
270
271
.
7.
Kuo
,
C.-M.
, 2008, “
Effects of Disoriented Grains on the Elastic Constants of Directionally Solidified Superalloys
,”
Mater. Sci. Eng., A
,
494
, pp.
103
112
.
8.
Franciosi
,
P.
, 1985, “
The Concepts of Latent Hardening and Strain Hardening in Metallic Single Crystals
,”
Acta Metall.
,
33
, pp.
1601
1612
.
9.
Nouailhas
,
D.
, and
Cailletaud
,
G.
, 1996, “
Finite Element Analysis of the Mechanical Behavior of Two-Phase Single-Crystal Superalloys
,”
Scr. Mater.
,
34
, pp.
565
571
.
10.
Busso
,
E. P.
,
Meissonnier
,
F. T.
, and
O’Dowd
,
N. P.
, 2000, “
Gradient-Dependent Deformation of Two-Phase Single Crystal
,”
J. Mech. Phys. Solids
,
48
, pp.
2333
2361
.
11.
Shenoy
,
M. M.
,
Gordon
,
A. P.
,
McDowell
,
D. L.
, and
Neu
,
R. W.
, 2005, “
Thermomechanical Fatigue Behavior of a Directionally Solidified Ni-Base Superalloy
,”
J. Eng. Mater. Technol.
,
127
, pp.
325
336
.
12.
Shenoy
,
M. M.
,
McDowell
,
D. L.
, and
Neu
,
R. W.
, 2006, “
Transversely Isotropic Viscoplasticity Model for a Directionally Solidified Ni-Base Superalloy
,”
Int. J. Plast.
,
22
, pp.
2301
2326
.
13.
Nye
,
J. F.
, 1985,
Physical Properties of Crystals
,
Clarendon Press
,
Oxford
.
14.
Chou
,
T.-W.
, 1992,
Microstructural Design of Fiber Composites
,
Cambridge University Press
,
Cambridge
.
15.
Lekhnitskii
,
S. G.
, 1981,
Theory of Elasticity of an Anisotropic Body
,
English ed.
,
Mir Publishers
,
Moscow
.
16.
Ambartsumyan
,
S. A.
, 1991,
Theory of Anisotropic Plates
,
2nd ed.
,
Hemisphere Publishing
,
New York
.
17.
Ting
,
T. C. T.
, 1996,
Anisotropic Elasticity: Theory and Applications
,
Oxford University Press
,
Oxford
.
18.
maple 6, 2000, Waterloo Maple Inc., Waterloo, Ontario.
19.
Cannon-Muskegon Corporation Catalog, 1991, Cast Single Crystal CMSX-3 Material Data, Muskegon, Michigan.
20.
Nagashima
,
S.
, 1984,
Shugo Soshiki
,
Maruzen
,
Tokyo
, pp.
259
263
.
21.
Yamazaki
,
M.
, 1991,
Handbook for Advanced Alloys With Controlled Crystalline Structures
,
Japanese Standards Association
,
Tokyo
, pp.
126
131
.
22.
Yasuda
,
H.
,
Takasugi
,
T.
, and
Koiwa
,
M.
, 1992, “
Elasticity of Ni-Based L12-Type Intermetallic Compounds
,”
Acta Metall. Mater.
,
40
, pp.
381
387
.
You do not currently have access to this content.