In latent interactions of dislocations, junction formation is one of the most important phenomena that contribute to the evolution of strength. In this work, the latent hardening coefficients for pure aluminum are estimated using 3D multiscale dislocation dynamics program (MDDP). Three well-known junction configurations, namely, the Hirth lock, the glissile junction, and the Lomer lock, are studied using 3D discrete dislocation dynamics simulations. The evolution of strength is discussed as a function of the resolved shear stress (RSS) and the number of junctions for the three junctions investigated. Hirth lock and Lomer lock are found to be the weakest and strongest junctions, respectively. Collinear reaction of dislocations does not form a junction but causes a higher strength than a Lomer lock. Quantitative and qualitative results are compared with those found in the literature.

References

References
1.
Saada
,
G.
, 1960, “
On Hardening Due to the Recombination of Dislocations
,”
Acta Metall.
,
8
, pp.
841
8476
.
2.
Schoeck
,
G.
, and
Frydman
,
R.
, 1972, “
The Contribution of the Dislocation Forest to the Flow Stress
,”
Phys. Stata Solidi B
,
53
, pp.
661
673
.
3.
Devincre
,
B.
,
Hoc
,
T.
, and
Kubin
,
L. P.
, 2005, “
Collinear Interactions of Dislocations and Slip Systems
,”
Mater. Sci. Eng. A
,
400–401
(
1–2 Suppl.
), pp.
182
185
.
4.
Devincre
,
B.
,
Kubin
,
L.
, and
Hoc
,
T.
, 2006, “
Physical Analyses of Crystal Plasticity by DD Simulations
,”
Scr. Mater.
,
54
(
5
), pp.
741
746
.
5.
Madec
,
R.
,
Devincre
,
B.
, and
Kubin
,
L. P.
, 2001, “
New Line Model for Optimized Dislocation Dynamics Simulations
,”
MRS Proceedings
,
653
, pp.
z1.8.1
z1.8.6
.
6.
Madec
,
R.
,
Devincre
,
B.
,
Kubin
,
L.
,
Hoc
,
T.
, and
Rodney
,
D.
, 2003, “
The Role of Collinear Interaction in Dislocation-Induced Hardening
,”
Science
,
301
(
5641
), pp.
1879
1882
.
7.
Madec
,
R.
,
Devincre
,
B.
, and
Kubin
,
L. P.
, 2002, “
From Dislocation Junctions to Forest Hardening
,”
Phys. Rev. Lett.
,
89
(
25
),
255508
.
8.
Madec
,
R.
,
Devincre
,
B.
, and
Kubin
,
L. P.
, 2002, “
On the Nature of Attractive Dislocation Crossed States
,”
Comput. Mater. Sci.
,
23
(
1–4
), pp.
219
224
.
9.
Madec
,
R.
, and
Kubin
,
L. P.
, 2008, “
Second-Order Junctions and Strain Hardening in bcc and fcc Crystals
,”
Scr. Mater.
,
58
(
9
), pp.
767
770
.
10.
Wickham
,
L. K.
,
Schwarz
,
K. W.
, and
Stolken
,
J. S.
, eds., 1999,
Dislocation Forest Interactions: Simulation and Prediction
,
MRS Proceedings
,
Boston, MA,
, Vol.
578
, pp.
125
130
.
11.
Wickham
,
L. K.
,
Schwarz
,
K. W.
, and
Stolken
,
J. S.
, 1999, “
Rules for Forest Interactions Between Dislocations
,”
Phys. Rev. Lett.
,
83
(
22
), pp.
4574
4577
.
12.
Kocks
,
U. F.
, 1959, “
Polyslip in Single Crystals of Face-Centered Cubic Metals
,” Ph.D. Thesis, Harvard University, Cambridge, MA.
13.
Franciosi
,
P.
, and
Zaoui
,
A.
, 1982, “
Multiple Slip in fcc Crystals, a Theoretical Approach Compared With Experimental Data
,”
Acta Metall.
,
30
, pp.
1627
1637
.
14.
Lomer
,
W. M.
, 1951, “
A Dislocation Reaction in the Face-Centered Cubic Lattice
,”
Philos. Mag.
,
42
, pp.
1327
1331
.
15.
Akasheh
,
F.
,
Zbib
,
H. M.
, and
Ohashi
,
T.
, 2007, “
Multiscale Modelling of Size Effect in fcc Crystals: Discrete Dislocation Dynamics and Dislocation-Based Gradient Plasticity
,”
Philos. Mag.
,
87
(
8–9
), pp.
1307
1326
.
16.
Alankar
,
A.
,
Mastorakos
,
I. N.
, and
Field
,
D. P.
, 2009, “
A Dislocation-Density-Based 3D Crystal Plasticity Model for Pure Aluminum
,”
Acta Mater.
,
57
(
19
), pp.
5936
5946
.
17.
Arsenlis
,
A.
, and
Parks
,
D. M.
, 2002, “
Modeling the Evolution of Crystallographic Dislocation Density in Crystal Plasticity
,”
J. Mech. Phys. Solids
,
50
, pp.
1979
2009
.
18.
Zbib
,
H.
,
Rhee
,
M.
, and
Hirth
,
J.
, 1998, “
On Plastic Deformation and the Dynamics of 3D Dislocations
,”
Int. J. Mech. Sci.
,
40
(
2–3
), pp.
113
.
19.
Kubin
,
L.
,
Canova
,
G.
,
Condat
,
M.
,
Devincre
,
B.
,
Pontikis
,
V.
, and
Bréchet
,
Y.
, 1992, “
Dislocation Microstructures and Plastic Flow: A 3D Simulation
,”
Solid State Phenom.
,
23–24
, pp.
455
472
.
20.
Bulatov
,
V. V.
,
Hsiung
,
L. L.
,
Tang
,
M.
,
Arsenlis
,
A.
,
Bartelt
,
M. C.
,
Cai
,
W.
,
Florando
,
J. N.
,
Hiratani
,
M.
,
Rhee
,
M.
,
Hommes
,
G.
,
Pierce
,
T. G.
, and
De La Rubia
,
T. D.
, 2006, “
Dislocation Multi-Junctions and Strain Hardening
,”
Nature (London)
,
440
(
7088
), pp.
1174
1178
.
21.
Madec
,
R.
, 2001, “
Dislocation Interactions to Plastic Flow in fcc Single Crystal: A Study by Simulation of Dislocation Dynamics
,” Ph.D. Thesis, University of Orsay, Paris.
22.
Devincre
,
B.
,
Hoc
,
T.
, and
Kubin
,
L.
, 2008, “
Dislocation Mean Free Paths and Strain Hardening of Crystals
,”
Science
,
320
(
5884
), pp.
1745
1748
.
You do not currently have access to this content.