Micro/mesoscale metal sheet hydroforming (SHF) process is an efficient approach suitable for mass production to fabricate metal parts with micro/mesochannel features. In conventional sheet hydroforming process, the channel’s feature sizes (e.g., the channel width, fillet radius, etc.) are much greater than the sheet’s thickness, so that the influence of the fillet and the inhomogeneous stress/strain distribution through the thickness direction can be ignored. However, the influence becomes increasingly important, because the thickness of the sheet and the feature dimensions of the microchannel are in the same magnitude as the feature sizes of the material and tools reduced to micro/mesoscale. In this paper, an analytical model with consideration of the inhomogeneous stress/strain distribution was developed to predict the channel profile at different pressures in micro/mesohydroforming process. Plane-strain deformation behaviors in the section of the workpiece were studied, and the relation function between the pressure and the channel height was established. Via this function, the channel height could be accurately predicted for a given pressure. Furthermore, an experimental setup was prepared, hydroforming experiments using microchannel dies with various geometric dimensions were conducted, and the channel height of the workpieces was measured. It was found that the experimental results matched well with the simulation results, which confirmed the validity of the analytical model proposed in this study. It is expected that the model will be beneficial in the optimization of the microchannel hydroforming process.

References

References
1.
Lücke
,
H. U.
,
Hartl
,
C.
, and
Abbey
,
T.
, 2001, “
Hydroforming
,”
J. Mater. Process. Technol.
,
115
(
1
), pp.
87
91
.
2.
Zhang
,
S. H.
, 1999, “
Developments in Hydroforming
,”
J. Mater. Process. Technol.
,
91
(
1–3
), pp.
236
244
.
3.
Lang
,
L. H.
,
Wang
,
Z. R.
,
Kang
,
D. C.
,
Yuan
,
S. J.
,
Zhang
,
S. H.
,
Danckert
,
J.
, and
Nielsen
,
K. B.
, 2004, “
Hydroforming Highlights: Sheet Hydroforming and Tube Hydroforming
,”
J. Mater. Process. Technol.
,
151
(
1–3
), pp.
165
177
.
4.
Oh
,
S. I.
,
Jeon
,
B. H.
,
Kim
,
H. Y.
, and
Yang
,
J. B.
, 2006, “
Applications of Hydroforming Processes to Automobile Parts
,”
J. Mater. Process. Technol.
,
174
(
1–3
), pp.
42
55
.
5.
Ahmetoglu
,
M.
, and
Altan
,
T.
, 2000, “
Tube Hydroforming: State-of-the-Art and Future Trends
,”
J. Mater. Process. Technol.
,
98
(
1
), pp.
25
33
.
6.
Koç
,
M.
, and
Altan
,
T.
, 2001, “
An Overall Review of the Tube Hydroforming (THF) Technology
,”
J. Mater. Process. Technol.
,
108
(
3
), pp.
384
393
.
7.
Zhang
,
S. H.
,
Wang
,
Z. R.
,
Xu
,
Y.
,
Wang
,
Z. T.
, and
Zhou
,
L. X.
, 2004, “
Recent Developments in Sheet Hydroforming Technology
,”
J. Mater. Process. Technol.
,
151
(
1–3
), pp.
237
241
.
8.
Hein
,
P.
, and
Vollertsen
,
F.
, 1999, “
Hydroforming of Sheet Metal Pairs
,”
J. Mater. Process. Technol.
,
87
(
1–3
), pp.
154
164
.
9.
Kreis
,
O.
, and
Hein
,
P.
, 2001, “
Manufacturing System for the Integrated Hydroforming, Trimming and Welding of Sheet Metal Pairs
,”
J. Mater. Process. Technol.
,
115
(
1
), pp.
49
54
.
10.
Novotny
,
S.
, and
Hein
,
P.
, 2001, “
Hydroforming of Sheet Metal Pairs From Aluminium Alloys
,”
J. Mater. Process. Technol.
,
115
(
1
), pp.
65
69
.
11.
Ahmetoglu
,
M.
,
Hua
,
J.
,
Kulukuru
,
S.
, and
Altan
,
T.
, 2004, “
Hydroforming of Sheet Metal Using a Viscous Pressure Medium
,”
J. Mater. Process. Technol.
,
146
(
1
), pp.
97
107
.
12.
Engel
,
U.
, and
Eckstein
,
R.
, 2002, “
Microforming—From Basic Research to Its Realization
,”
J. Mater. Process. Technol.
,
125–126
, pp.
35
44
.
13.
Geiger
,
M.
,
Geißdörfer
,
S.
, and
Engel
,
U.
, 2007, “
Mesoscopic Model: Advanced Simulation of Microforming Processes
,”
Prod. Eng.
,
1
(
1
), pp.
79
84
.
14.
Zhuang
,
W.
,
Wang
,
S.
,
Cao
,
J.
,
Lin
,
J.
, and
Hartl
,
C.
, 2010, “
Modelling of Localised Thinning Features in the Hydroforming of Micro-Tubes Using the Crystal-Plasticity FE Method
,”
Int. J. Adv. Manuf. Technol.
,
47
(
9
), pp.
859
865
.
15.
Chan
,
W. L.
,
Fu
,
M. W.
,
Lu
,
J.
, and
Liu
,
J. G.
, 2010, “
Modeling of Grain Size Effect on Micro Deformation Behavior in Micro-Forming of Pure Copper
,”
Mater. Sci. Eng., A
,
527
(
24–25
), pp.
6638
6648
.
16.
Deng
,
J. H.
,
Fu
,
M. W.
, and
Chan
,
W. L.
, 2011, “
Size Effect on Material Surface Deformation Behavior in Micro-Forming Process
,”
Matr. Sci. Eng., A
,
528
(13–14)
, pp.
4799
4806
.
17.
Peng
,
L. F.
,
Hu
,
P.
,
Lai
,
X. M.
,
Mei
,
D. Q.
, and
Ni
,
J.
, 2009, “
Investigation of Micro/Meso Sheet Soft Punch Stamping Process—Simulation and Experiments
,”
Mater. Des.
,
30
(
3
), pp.
783
790
.
18.
Joo
,
B. Y.
,
Oh
,
S. I.
, and
Son
,
Y. K.
, 2004, “
Forming of Micro Channels With Ultra Thin Metal Foils
,”
CIRP Ann.-Manuf. Technol.
,
53
(
1
), pp.
243
246
.
19.
Peng
,
L. F.
,
Liu
,
D.
,
Hu
,
P.
,
Lai
,
X. M.
, and
Ni
,
J.
, 2010, “
Fabrication of Metallic Bipolar Plates for Proton Exchange Membrane Fuel Cell by Flexible Forming Process-Numerical Simulations and Experiments
,”
ASME J. Fuel Cell Sci. Technol.
,
7
(
3
), p.
031009
.
20.
Mahabunphachai
,
S.
, and
Koç
,
M.
, 2008, “
Fabrication of Micro-Channel Arrays on Thin Metallic Sheet Using Internal Fluid Pressure: Investigations on Size Effects and Development of Design Guidelines
,”
J. Power Sources
,
175
(
1
), pp.
363
371
.
21.
Kim
,
T. J.
,
Yang
,
D. Y.
, and
Han
,
S. S.
, 2004, “
Numerical Modeling of the Multi-Stage Sheet Pair Hydroforming Process
,”
J. Mater. Process. Technol.
,
151
(
1–3
), pp.
48
53
.
22.
Mahabunphachai
,
S.
, and
Koç
,
M.
, 2008, “
Investigation of Size Effects on Material Behavior of Thin Sheet Metals Using Hydraulic Bulge Testing at Micro/Meso-Scales
,”
Int. J. Mach. Tools Manuf.
,
48
(
9
), pp.
1014
1029
.
23.
Sharma
,
A. K.
, and
Rout
,
D. K.
, 2009, “
Finite Element Analysis of Sheet Hydromechanical Forming of Circular Cup
,”
J. Mater. Process. Technol.
,
209
(
3
), pp.
1445
1453
.
24.
Yang
,
C.
, and
Ngaile
,
G.
, 2008, “
Analytical Model for Planar Tube Hydroforming: Prediction of Formed Shape, Corner Fill, Wall Thinning, and Forming Pressure
,”
Int. J. Mech. Sci.
,
50
(
8
), pp.
1263
1279
.
25.
Hill
,
R.
, 1950, “
A Theory of the Plastic Bulging of a Metal Diaphragm by Lateral Pressure
,”
Philos. Mag.
,
41
(
322
), pp.
1133
1142
.
26.
Chakrabarty
,
J.
, and
Alexander
,
J.
, 1970, “
Hydrostatic Bulging of Circular Diaphragms
,”
J. Strain Anal. Eng. Des.
,
5
(
3
), pp.
155
161
.
27.
Gutscher
,
G.
,
Wu
,
H. C.
,
Ngaile
,
G.
, and
Altan
,
T.
, 2004, “
Determination of Flow Stress for Sheet Metal Forming Using the Viscous Pressure Bulge (VPB) Test
,”
J. Mater. Process. Technol.
,
146
(
1
), pp.
1
7
.
28.
Shang
,
H. M.
,
Qin
,
S.
, and
Tay
,
C. J.
, 1997, “
Hydroforming Sheet Metal With Intermittent Changes in the Draw-in Condition of the Flange
,”
J. Mater. Process. Technol.
,
63
(
1–3
), pp.
72
76
.
29.
Shang
,
H.
,
Chau
,
F.
,
Lee
,
K.
,
Tay
,
C.
, and
Toh
,
S.
, 1987, “
Modeling of the Hydroforming of Sheet Materials Clamped With Varying Blank Holding Loads
,”
ASME J. Eng. Mater. Technol.
,
109
, p.
92
.
30.
Kruglov
,
A. A.
,
Enikeev
,
F. U.
, and
Lutfullin
,
R. Y.
, 2002, “
Superplastic Forming of a Spherical Shell Out a Welded Envelope
,”
Mater. Sci. Eng., A
,
323
(
1–2
), pp.
416
426
.
31.
Assempour
,
A.
, and
Emami
,
M. R.
, 2009, “
Pressure Estimation in the Hydroforming Process of Sheet Metal Pairs With the Method of Upper Bound Analysis
,”
J. Mater. Process. Technol.
,
209
(
5
), pp.
2270
2276
.
32.
Koç
,
M.
,
Billur
,
E.
, and
Cora
,
Ö. N.
, 2011, “
An Experimental Study on the Comparative Assessment of Hydraulic Bulge Test Analysis Methods
,”
Mater. Des.
,
32
(
1
), pp.
272
281
.
33.
Soussan
,
A.
,
Degallaix
,
S.
, and
Magnin
,
T.
, 1991, “
Work-Hardening Behaviour of Nitrogen-Alloyed Austenitic Stainless Steels
,”
Mater. Sci. Eng., A
,
142
(
2
), pp.
169
176
.
34.
Ludwigson
,
D.
, 1971, “
Modified Stress-Strain Relation for FCC Metals and Alloys
,”
Metall. Mater. Trans. B
,
2
(
10
), pp.
2825
2828
.
You do not currently have access to this content.