In this work, new proposed damage tensors are studied in order to investigate the damage effect variables in the mechanical behavior of materials. All cases studied in this work are defined in terms of the elasticity of the material and based on the hypotheses of both elastic strain equivalence and elastic energy equivalence. Moreover, the new proposed damage tensors are anisotropically expressed in terms of the well-known damage effect tensor M. The principal-valued damage effect tensor is used to obtain the first scalar invariant of that tensor and its inverse, which are employed in expressing and verifying the new proposed damage tensors. The study demonstrates that most of the new proposed damage tensors are verified within the framework of continuum damage mechanics. In addition, new hybrid damage tensors are proposed which are defined in terms of the damage effect tensor and the new proposed damage tensors. The new hybrid damage tensors are eventually expressed in terms of the damage effect tensor.

References

References
1.
Lemaitre
,
J.
, and
Desmorat
,
R.
, 2005,
Engineering Damage Mechanics
,
Springer-Verlag
,
Berlin/Heidelberg
.
2.
Krajcinovic
,
D.
, 1996,
Damage Mechanics
,
Elsevier
,
The Netherlands
.
3.
Budiansky
,
B.
, and
O’Connell
,
R. J.
, 1976, “
Elastic Moduli of a Cracked Solid
,”
Int. J. Solids Struct.
,
12
, pp.
81
97
.
4.
Lubarda
,
V.
, and
Krajcinovic
,
D.
, 1993, “
Damage Tensors and the Crack Density Distribution
,”
Int. J. Solids Struct.
,
30
(
20
), pp.
2859
2877
.
5.
Cauvin
,
A.
, and
Testa
,
R.
, 1999, “
Damage Mechanics: Basic Variables in Continuum Theories
,”
Int. J. Solids Struct.
,
36
, pp.
747
761
.
6.
Voyiadjis
,
G. Z.
, and
Kattan
,
P.
, 2011, “
A New Class of Damage Variables in Continuum Damage Mechanics
,”
ASME J. Eng. Mater. Technol.
,
23
manuscript pages (in press).
7.
Lemaitre
,
J.
, 1984, “
How to Use Damage Mechanics
,”
Nucl. Eng. Des.
,
80
, pp.
233
245
.
8.
Chow
,
C.
, and
Wang
,
J.
, 1987, “
An Anisotropic Theory of Elasticity for Continuum Damage Mechanics
,”
Int. J. Fract.
,
33
, pp.
3
16
.
9.
Lee
,
H.
,
Peng
,
K.
, and
Wang
,
J.
, 1985, “
An Anisotropic Damage Criterion for Deformation Instability and Its Application to Forming Limit Analysis of Metal Plates
,”
Eng. Fract. Mech.
,
21
, pp.
1031
1054
.
10.
Voyiadjis
,
G. Z.
, and
Kattan
,
P. I.
, 1996, “
On the Symmetrization of the Effective Stress Tensor in Continuum Damage Mechanics
,”
J. Mech. Behav. Mater.
,
7
(
1–2
), pp.
139
165
.
11.
Voyiadjis
,
G. Z.
, and
Kattan
,
P. I.
, 1999,
Advances in Damage Mechanics: Metals and Metal Matrix Composites
,
Elsevier Science
,
The Netherlands
.
12.
Voyiadjis
,
G. Z.
, and
Kattan
,
P. I.
, 2006a,
Advances in Damage Mechanics: Metals and Metal Matrix Composites With an Introduction to Fabric Tensors
,
2nd ed.
,
Elsevier
,
New York
.
13.
Kattan
,
P. I.
, and
Voyiadjis
,
G. Z.
, 2001a, “
Decomposition of Damage Tensor in Continuum Damage Mechanics
,”
J. Eng. Mech., ASCE
,
127
(
9
), pp.
940
944
.
14.
Kattan
,
P. I.
, and
Voyiadjis
,
G. Z.
, 2001b,
Damage Mechanics With Finite Elements: Practical Applications With Computer Tools
,
Springer-Verlag
,
Germany
.
15.
Doghri
,
I.
, 2000,
Mechanics of Deformable Solids: Linear and Nonlinear, Analytical and Computational Aspects
,
Springer-Verlag
,
Germany
.
16.
Hansen
,
N. R.
, and
Schreyer
,
H. L.
, 1994, “
A Thermodynamically Consistent Framework for Theories of Elastoplasticity Coupled With Damage
,”
Int. J. Solids Struct.
,
31
(
3
), pp.
359
389
.
17.
Luccioni
,
B.
, and
Oller
,
S.
, 2003, “
A Directional Damage Model
,”
Comput. Methods Appl. Mech. Eng.
,
192
, pp.
1119
1145
.
18.
Kachanov
,
L.
, 1958, “
On the Creep Fracture Time
,”
Izv Akad, Nauk USSR, Otd. Tech.
,
8
, pp.
26
31
(in Russian).
19.
Rabotnov
,
Y.
, 1969, “
Creep Rupture
,”
Proceedings of the Twelfth International Congress of Applied Mechanics
,
M.
Hetenyi
and
W. G.
Vincenti
, eds.,
Stanford
, 1968,
Springer-Verlag
,
Berlin
, pp.
342
349
.
20.
Lemaitre
,
J.
, 1971, “
Evaluation of Dissipation and Damage in Metals Subjected to Dynamic Loading
,”
Proceedings of I.C.M. 1
,
Kyoto, Japan
.
21.
Chaboche
,
J. L.
, 1981, “
Continuous Damage Mechanics—A Tool to Describe Phenomena Before Crack Initiation
,”
Nucl. Eng. Des.
,
64
, pp.
233
247
.
22.
Sidoroff
,
F.
, 1981, “
Description of Anisotropic Damage Application to Elasticity
,”
IUTAM Colloqium on Physical Nonlinearities in Structural Analysis
, pp.
237
244
,
Springer-Verlag
,
Berlin
.
23.
Cordebois
,
J. P.
, and
Sidoroff
,
F.
, 1979, “
Damage Induced Elastic Anisotropy
,” Colloque Euromech,
115
, Villard de Lans.
24.
Cordebois
,
P. J.
, 1983, “
Criteres d’Instabilite Plastique et Endommagement Ductile en Grandes Deformations
,” These de Doctorat, Presente a l’Universite Pierre et Marie Curie.
25.
Chow
,
C. L.
, and
Wang
,
J.
, 1988, “
Ductile Fracture Characterization With an Anisotropic Continuum Damage Theory
,”
Eng. Fract. Mech.
,
30
, pp.
547
563
.
26.
Krajcinovic
,
D.
, and
Foneska
,
G. U.
, 1981, “
The Continuum Damage Theory for Brittle Materials
,”
J. Appl. Mech.
,
48
, pp.
809
824
.
27.
Murakami
,
S.
, and
Ohno
,
N.
, 1981, “
A Continuum Theory of Creep and Creep Damage
,”
Proceedings of 3M IUTAM Symposium on Creep in Structures
, pp.
422
444
,
Springer
,
Berlin
.
28.
Murakami
,
S.
, 1983, “
Notion of Continuum Damage Mechanics and its Application to Anisotropic Creep Damage Theory
,”
ASME J. Eng. Mater. Technol.
,
105
, pp.
99
105
.
29.
Krajcinovic
,
D.
, 1983, “
Constitutive Equations for Damaging Materials
,”
J. Appl. Mech.
,
50
, pp.
355
360
.
30.
Krempl
,
E.
, 1981, “
On the Identification Problem in Materials Deformation Modeling
,”
Euromech
,
147
,
on Damage Mechanics
,
Cachan, France
.
31.
Leckie
,
F. A.
, and
Onat
,
E. T.
, 1981, “
Tensorial Nature of Damage Measuring Internal Variables
,”
IUTAM Colloquim on Physical Nonlinearities in Structural Analysis
,
Springer-Verlag
,
Berlin
, pp.
140
155
.
32.
Onat
,
E. T.
, 1986, “
Representation of Mechanical Behavior in the Presence of Internal Damage
,”
Eng. Fract. Mech.
,
25
, pp.
605
614
.
33.
Onat
,
E. T.
, and
Leckie
,
F. A.
, 1988, “
Representation of Mechanical Behavior in the Presence of Changing Internal Structure
,”
J. Appl. Mech.
,
55
, pp.
1
10
.
34.
Betten
,
J.
, 1981, “
Damage Tensors in Continuum Mechanics
,”
J. Mec. Theor. Appl.
,
2
, pp.
13
32
. (Presented at Euromech Colloqium 147 on Damage Mechanics, Paris-VI, Cachan, Sept. 22).
35.
Betten
,
J.
, 1986, “
Applications of Tensor Functions to the Formulation of Constitutive Equations Involving Damage and Initial Anisotropy
,”
Eng. Fract. Mech.
,
25
, pp.
573
584
.
36.
Ju
,
J. W.
, 1990, “
Isotropic and Anisotropic Damage Variables in Continuum Damage Mechanics
,”
J. Eng. Mech., ASCE
,
116
, pp.
2764
2770
.
37.
Voyiadjis
,
G. Z.
, and
Kattan
,
P. I.
, 2009, “
A Comparative Study of Damage Variables in Continuum Damage Mechanics
,”
Int. J. Damage Mech.
,
18
(
4
), pp.
315
340
.
38.
Lemaitre
,
J.
, 1985, “
A Continuous Damage Mechanics Model for Ductile Fracture
,”
ASME J. Eng. Mater. Technol.
,
107
, pp.
83
89
.
39.
Voyiadjis
,
G. Z.
, and
Park
,
T.
, 1997, “
Local and Interfacial Damage Analysis of Metal Matrix Composites Using the Finite Element Method
,”
Eng. Fract. Mech.
,
56
(
4
), pp.
483
511
.
40.
Voyiadjis
,
G. Z.
, and
Kattan
,
P. I.
, 1992, “
A Plasticity-Damage Theory for Large Deformation of Solids—Part I: Theoretical Formulation
,”
Int. J. Eng. Sci.
,
30
(
9
), pp.
1089
1108
.
41.
Voyiadjis
,
G. Z.
, and
Kattan
,
P. I.
, 1990, “
A Coupled Theory of Damage Mechanics and Finite Strain Elasto-Plasticity—Part II: Damage and Finite Strain Plasticity
,”
Int. J. Eng. Sci.
,
28
(
6
), pp.
505
524
.
42.
Kattan
,
P. I.
, and
Voyiadjis
,
G. Z.
, 1993, “
A Plasticity-Damage Theory for Large Deformation of Solids—Part II: Applications to Finite Simple Shear
,”
Int. J. Eng. Sci.
,
31
(
1
), pp.
183
199
.
43.
Cordebois
,
J. P.
, and
Sidoroff
,
F.
, 1982 “
Anisotropic Damage in Elasticity and Plasticity
,”
J. Mec. Theor. Appl. (Numerous Special)
,
2
, pp.
45
60
(in French).
44.
Murakami
,
S.
, 1988, “
Mechanical Modeling of Material Damage
,”
J. Appl. Mech.
,
55
, pp.
280
286
.
45.
Celentano
,
D. J.
,
Tapia
,
P. E.
, and
Chaboche
,
J.-L.
, 2004, “
Experimental and Numerical Characterization of Damage Evolution in Steels
,”
Mecanica Computacional
G.
Buscaglia
,
E.
Dari
, and
O.
Zamonsky
, eds.,
Bariloche
,
Argentina
, Vol.
XXIII
.
46.
Nichols
,
J. M.
, and
Abell
,
A. B.
, 2003, “
Implementing the Degrading Effective Stiffness of Masonry in a Finite Element Model
,”
North American Masonry Conference
,
Clemson
,
South Carolina
.
47.
Nichols
,
J. M.
, and
Totoev
,
Y. Z.
, 1999, “
Experimental Investigation of the Damage Mechanics of Masonry Under Dynamic In-Plane Loads
,”
North American Masonry Conference
,
Austin
,
Texas
.
48.
Voyiadjis
,
G. Z.
, 1988, “
Degradation of Elastic Modulus in Elastoplastic Coupling With Finite Strains
,”
Int. J. Plast.
,
4
, pp.
335
353
.
You do not currently have access to this content.