Recently, metal particle polymer composites have been proposed as sensing materials for micro corrosion sensors. To design the sensors, a detailed understanding of diffusion through metal particle polymer composites is necessary. Accordingly, in this work molecular dynamics (MD) simulations are used to study the diffusion of O2 and N2 penetrants in metal particle polymer nanocomposites composed of an uncross-linked polydimethylsiloxane (PDMS) matrix with Cu nanoparticle inclusions. PDMS is modeled using a hybrid interatomic potential with explicit treatment of Si and O atoms along the chain backbone and coarse-grained methyl side groups. In most models examined in this work, MD simulations show that diffusion coefficients of O2 and N2 molecules in PDMS-based nanocomposites are lower than that in pure PDMS. Nanoparticle inclusions act primarily as geometric obstacles for the diffusion of atmospheric penetrants, reducing the available porosity necessary for diffusion, with instances of O2 and N2 molecule trapping also observed at or near the PDMS/Cu nanoparticle interfaces. In models with the smallest gap between Cu nanoparticles, MD simulations show that O2 and N2 diffusion coefficients are higher than that in pure PDMS at the lowest temperatures studied. This is due to PDMS chain confinement at low temperatures in the presence of the Cu nanoparticles, which induces low-density regions within the PDMS matrix. MD simulations show that the role of temperature on diffusion can be modeled using the Williams–Landel–Ferry equation, with parameters influenced by nanoparticle content and spacing.

References

References
1.
Masala
,
O.
, and
Seshadri
,
R.
, 2004, “
Synthesis Routes for Large Volumes of Nanoparticles
,”
Annu. Rev. Mater. Res.
,
34
, pp.
41
81
.
2.
Cozzoli
,
P. D.
,
Pellegrino
,
T.
, and
Manna
,
L.
, 2006, “
Synthesis, Properties and Perspectives of Hybrid Nanocrystal Structures
,”
Chem. Soc. Rev.
,
35
, pp.
1195
1208
.
3.
Hussain
,
F.
,
Hojjati
,
M.
,
Okamoto
,
M.
, and
Gorga
,
R. E.
, 2006, “
Review Article: Polymer-Matrix Nanocomposites, Processing, Manufacturing, and Application: An Overview
,”
J. Compos. Mater.
,
40
, pp.
1511
1575
.
4.
Miracle
,
D. B.
, 2005, “
Metal Matrix Composites – From Science to Technological Significance
,”
J. Compos. Sci. Technol.
,
65
, pp.
2526
2540
.
5.
Yu
,
W.
,
France
,
D. M.
,
Choi
,
S. U. S.
, and
Routbort
,
J. L.
, 2007, “
Review and Assessment of Nanofluid Technology for Transportation and Other Applications
,”
Argonne National Laboratory
, Report No. ANL/ESD/07-9.
6.
Huang
,
A.
,
Wong
,
V. T. S.
, and
Ho
,
C. M.
, 2006, “
Silicone Polymer Chemical Vapor Sensors Fabricated by Direct Polymer Patterning on Substrate Technique (DPPOST)
,”
Sens. Actuators B
,
116
, pp.
2
10
.
7.
Pan
,
F.
, and
Huang
,
A.
, 2009, “
Investigation of Electrochemical Transduction Mechanism of Metal Particle Polymer Composites for the Development of MEMS-Based Corrosion Sensor
,”
ASME International Mechanical Engineering Congress and Exposition
.
8.
Chang
,
P. C.
,
Flatau
,
A.
, and
Liu
,
S. C.
, 2003, “
Review Paper: Health Monitoring of Civil Structures
,”
Struct. Health Monit.
,
2
, pp.
257
267
.
9.
Roberge
,
P. R.
, 2000,
Handbook of Corrosion Engineering
,
McGraw-Hill
,
New York
.
10.
Sudibjo
,
A.
, and
Spearot
,
D. E.
, 2011, “
Molecular Dynamics Simulation of Diffusion of Small Atmospheric Penetrates in Polydimethylsiloxane
,”
Mol. Simul.
,
37
, pp.
115
122
.
11.
Torrens
,
I. M.
, 1972,
Interatomic Potentials
,
Academic Press
,
New York
.
12.
Sok
,
R. M.
,
Berendsen
,
H. J. C.
, and
van Gunsteren
,
W. F.
, 1992, “
Molecular Dynamics Simulation of the Transport of Small Molecules Across a Polymer Membrane
,”
J. Chem. Phys.
,
96
, pp.
4699
4704
.
13.
Frischknecht
,
A. L.
, and
Curro
,
J. G.
, 2003, “
Improved United Atom Force Field for Poly(Dimethylsiloxane)
,”
Macromolecules
,
36
, pp.
2122
2129
.
14.
Sok
,
R. M.
, 1994, “
Permeation of Small Molecules Across a Polymer Membrane: A Computer Simulation Study
,” Ph.D. dissertation, University of Groningen, Groningen, Netherlands.
15.
Erkoç
,
S.
, 2001,
Annual Review of Computational Physics
,
World Scientific
,
Singapore
,
IX
.
16.
Allen
,
M. P.
, and
Tildesley
,
D. J.
, 1987,
Computer Simulation of Liquids
,
Oxford Science Publications
,
Oxford
.
17.
Tamai
,
Y.
,
Tanaka
,
H.
, and
Nakanishi
,
K.
, 1994, “
Molecular Simulation of Permeation of Small Penetrants Through Membranes. 1. Diffusion Coefficients
,”
Macromolecules
,
27
, pp.
4498
4508
.
18.
Li
,
T.
,
Kildsig
,
D. O.
, and
Park
,
K.
, 1997, “
Computer Simulation of Molecular Diffusion in Amorphous Polymers
,”
J. Controlled Release
,
48
, pp.
57
66
.
19.
Charati
,
S. G.
, and
Stern
,
S. A.
, 1998, “
Diffusion of Gases in Silicone Polymers: Molecular Dynamics Simulations
,”
Macromolecules
,
31
, pp.
5529
5535
.
20.
Jawalkar
,
S. S.
, and
Aminabhavi
,
T. M.
, 2007, “
Molecular Dynamics Simulations to Compute Diffusion Coefficients of Gases Into Polydimethylsiloxane and Poly{(1,5-Naphtalene)-co-[1,4-Durene-2,2′-Bis(3,4-Dicarboxyl phenyl)Hexafluoropropane Diimide]}
,”
Polym. Int.
,
56
, pp.
928
934
.
21.
Li
,
B.
,
Pan
,
F.
,
Fang
,
Z.
,
Liu
,
L.
, and
Jiang
,
Z.
, 2008, “
Molecular Dynamics Simulation of Diffusion Behavior of Benzene/Water in PDMS-Calix[4]arene Hybrid Pervaporation Membranes
,”
Ind. Eng. Chem. Res.
,
47
, pp.
4440
4447
.
22.
Hunt
,
T. A.
, and
Todd
,
B. D.
, 2009, “
Diffusion of Linear Polymer Melts in Shear and Extensional Flows
,”
J. Chem. Phys.
,
131
,
054904
.
23.
Chitra
,
R.
, and
Yashonath
,
S.
, 1997, “
Estimation of Error in the Diffusion Coefficient From Molecular Dynamics Simulations
,”
J. Phys. Chem. B
,
101
, pp.
5437
5445
.
24.
Pikunic
,
J.
, and
Gubbins
,
K. E.
, 2003, “
Molecular Dynamics Simulations of Simple Fluids Confined in Realistic Models of Nanoporous Carbons
,”
Eur. Phys. J. E, 12
, pp.
35
40
.
25.
Sperling
,
L. H.
, 2006,
Introduction to Physical Polymer Science
,
Wiley Interscience
,
New Jersey
.
26.
Heine
,
D. R.
,
Grest
,
G. S.
,
Lorenz
,
C. D.
,
Tsige
,
M.
, and
Stevens
,
M. J.
, 2004, “
Atomistic Simulations of End-Linked Poly(Dimethylsiloxane) Networks: Structure and Relaxation
,”
Macromolecules
,
37
, pp.
3857
3864
.
28.
Melchionna
,
S.
,
Ciccotti
,
G.
, and
Holian
,
B. L.
, 1993, “
Hoover NPT Dynamics for Systems Varying in Shape and Size
,”
Mol. Phys.
,
78
, pp.
533
544
.
29.
Sides
,
S.
,
Curro
,
J.
,
Grest
,
G. S.
,
Stevens
,
M. J.
,
Soddemann
,
T.
, and
Londono
,
J. D.
, 2002, “
Structure of Poly(Dimethylsiloxane) Melts: Theory, Simulation and Experiment
,”
Macromolecules
,
35
, pp.
6455
6465
.
30.
Dollase
,
T.
,
Wilhelm
,
M.
,
Spiess
,
H. W.
,
Yagen
,
Y.
,
Yerushalmi-Rozen
,
R.
, and
Gottlieb
,
M.
, 2003, “
Effect of Interfaces on the Crystallization Behavior of PDMS
,”
Interface Sci.
,
11
, pp.
199
209
.
31.
Knauert
,
S. T.
,
Douglas
,
J. F.
, and
Starr
,
F. W.
, 2007, “
The Effect of Nanoparticle Shape on Polymer-Nanocomposite Rheology and Tensile Strength
,”
J. Polym. Sci. B
,
45
, pp.
1882
1897
.
32.
Clarson
,
S. J.
, and
Semlyen
,
J. A.
, 1993,
Siloxane Polymers
,
Prentice Hall
,
Englewood Cliffs, NJ
.
33.
Williams
,
M. L.
,
Landel
,
R. F.
, and
Ferry
,
J. D.
, 1955, “
The Temperature Dependence of Relaxation Mechanisms in Amorphous Polymers and Other Glass-Forming Liquids
,”
J. Am. Chem. Soc.
,
77
, pp.
3701
3707
.
34.
Lomellini
,
P.
, 1992, “
Williams-Landel-Ferry Versus Arrhenius Behaviour: Polystyrene Melt Viscoelasticity Revised
,”
Polymer
,
33
, pp.
4983
4989
.
35.
Angell
,
C. A.
, 1997, “
Why 16-17 in the WLF Equation is Physical—and the Fragility of Polymers
,”
Polymer
,
38
, pp.
6261
6266
.
36.
Urakawa
,
O.
,
Swallen
,
S. F.
,
Ediger
,
M. D.
, and
von Meerwall
,
E. D.
, 2004, “
Self-Diffusion and Viscosity of Low Molecular Weight Polystyrene Over a Wide Temperature Range
,”
Macromolecules
,
37
, pp.
1558
1564
.
37.
Sanchez
,
I. C.
, 1974, “
Towards a Theory of Viscosity for Glass-Forming Liquids
,”
J. Appl. Phys.
,
45
, pp.
4204
4215
.
38.
Cui
,
S. T.
,
Cummings
,
P. T.
, and
Cochran
,
H. D.
, 2001, “
Molecular Simulation of the Transition From Liquidlike to Solidlike Behavior in Complex Fluids Confined to Nanoscale Gaps
,”
J. Chem. Phys.
,
114
, pp.
7189
7195
.
39.
Prathab
,
B.
,
Aminabhavi
,
T. M.
,
Parthasarathi
,
R.
,
Manikandan
,
P.
, and
Subramanian
,
V.
, 2006, “
Molecular Modeling and Atomistic Simulation Strategies to Determine Surface Properties of Perfluorinated Homopolymers and Their Random Copolymers
,”
Polymer
,
47
, pp.
6914
6924
.
40.
Prathab
,
B.
,
Aminabhavi
,
T. M.
, and
Subramanian
,
V.
, 2007, “
Computation of Surface Energy and Surface Segregation Phenomena of Perfluorinated Copolymers and Blends – A Molecular Modeling Approach
,”
Polymer
,
48
, pp.
417
424
.
41.
Prathab
,
B.
, and
Aminabhavi
,
T. M.
, 2007, “
Atomistic Simulations to Compute Surface Properties of Poly(n-Vinyl-2-Pyrrolidone) (PVP) and Blends of PVP/Chitosan
,”
Langmuir
,
23
, pp.
5439
5444
.
42.
Jawalkar
,
S. S.
,
Nataraj
,
S. K.
,
Raghu
,
A. V.
, and
Aminabhavi
,
T. M.
, 2008, “
Molecular Dynamics Simulations on the Blends of Poly(Vinyl Pyrrolidone) and Poly(Bisphenol-a-Ether Sulfone)
,”
J. Appl. Polym. Sci.
,
108
, pp.
3572
3576
.
You do not currently have access to this content.