Using “tunable” interatomic potentials, the lattice misfits for a fcc–bcc metal system have been varied in atomistic models, while keeping other properties essentially unchanged. The procedure and the fitting results of such tunable interatomic potentials for fcc–bcc systems are presented. Varying lattice misfits were found to significantly alter the atomic structure of fcc–bcc interfaces in Kurdjumov–Sachs crystallographic orientation. Defect formation energies at the interfaces were calculated. For vacancies, in general, high numbers of low energy sites are associated with high dislocation junction densities. For interstitials, the formation energies are all substantially below the bulk value, regardless of lattice misfits. These results are relevant to understanding the sink strength of interfaces with different atomic structures.

References

References
1.
Misra
,
A.
,
Demkowicz
,
M. J.
,
Zhang
,
X.
, and
Hoagland
,
R. G.
, 2007,
“The Radiation Damage Tolerance of Ultra-High Strength Nanolayered Composites,”
JOM
,
59
,
62
65.
2.
Demkowicz
,
M. J.
,
Hoagland
,
R. G.
, and
Hirth
,
J. P.
, 2008,
“Interface Structure and Radiation Damage Resistance in Cu-Nb Multilayer Nanocomposites,”
Phys. Rev. Lett.
,
100
,
136102
.
3.
Liu
,
X.-Y.
,
Hoagland
,
R. G.
,
Wang
,
J.
,
Germann
,
T. C.
, and
Misra
,
A.
, 2010,
“The Influence of Dilute Heats of Mixing on the Atomic Structures, Defect Energetics and Mechanical Properties of fcc-bcc Interfaces,”
Acta Mater.
,
58
, pp.
4549
4557
.
4.
Daw
,
M. S.
, and
Baskes
,
M. I.
, 1984,
“Embedded-Atom Method: Derivation and Application to Impurities, Surfaces, and Other Defects in Metals,”
Phys. Rev. B
,
29
, pp.
6443
6453
.
5.
Voter
,
A. F.
, 1993,
“Embedded Atom Method Potentials for Seven FCC Metals: Ni, Pd, Pt, Cu, Ag, Au, and Al,”
Los Alamos National Laboratory
, Unclassified Technical Report No. LA-UR 93-3901.
6.
Johnson
,
R. A.
, and
Oh
,
D. J.
, 1989,
“Analytic Embedded Atom Method Model for bcc Metals,”
J. Mater. Res.
,
4
, pp.
1195
1201
.
7.
Demkowicz
,
M. J.
, and
Hoagland
,
R. G.
, 2008,
“Structure of Kurdjumov-Sachs Interfaces in Simulations of a Copper-Niobium Bilayer,”
J. Nucl. Mater.
,
372
, pp.
45
52
.
8.
Pearson
,
W. B.
, 1967,
Handbook of Lattice Spacings and Structures of Metals and Alloys
,
Pergamon Press
,
Oxford
.
9.
Demkowicz
,
M. J.
, and
Hoagland
,
R. G.
, 2009,
“Simulations of Collision Cascades in Cu—Nb Layered Composites Using AN Eam Interatomic Potential,”
Int. J. Appl. Mech.
,
1
, pp.
421
442
.
10.
Demkowicz
,
M. J.
,
Wang
,
J.
, and
Hoagland
,
R. G.
, 2008,
“Interfaces Between Dissimilar Crystalline Solids,”
Dislocations in Solids
,
J. P.
Hirth
, ed.,
Elsevier
,
Amsterdam
, Vol.
14
, Chap. 83.
11.
Wang
,
J.
,
Hoagland
,
R. G.
,
Hirth
,
J. P.
, and
Misra
,
A.
, 2008,
“Atomistic Simulations of the Shear Strength and Sliding Mechanisms of Copper-Niobium Interfaces,”
Acta Mater.
,
56
, pp.
3109
3119
.
12.
Wang
,
J.
,
Hoagland
,
R. G.
,
Liu
,
X.-Y.
, and
Misra
,
A.
, 2011,
“The Influence of Interface Shear Strength on the Glide Dislocation-Interface Interactions,”
Acta Mater.
,
59
, pp.
3164
3173
.
13.
Mendelev
,
M. I.
,
Han
,
S.
,
Son
,
W.-J.
,
Ackland
,
G. J.
, and
Srolovitz
,
D. J.
, 2007,
“Simulation of the Interaction Between Fe Impurities and Point Defects in V,”
Phys. Rev. B
,
76
,
214105
.
14.
Kresse
,
G.
, and
Hafner
,
J.
, 1993,
“Ab Initio Molecular Dynamics for Liquid Metals,”
Phys. Rev. B
,
47
, pp.
558
561
.
15.
Kresse
,
G.
, and
Furthmüller
,
J.
, 1996,
“Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set,”
J. Comput. Mater. Sci.
,
6
, pp.
15
50
.
16.
Pond
,
R. C.
, and
Hirth
,
J. P.
, 1994,
“Defects at Surfaces and Interfaces,”
Solid State Physics
,
F.
Seitz
and
D.
Turnbull
, eds., Vol.
47
,
Academic Press
,
San Diego, CA
.
17.
Bilby
,
B. A.
, 1960,
“Continuous Distribution of Dislocations,”
Progress in Solid Mechanics I
,
I. N.
Sneddon
and
R.
Hill
, eds., North-Holland, Amsterdam, pp.
329
398
.
18.
Gray
,
D. E.
, 1957,
American Institute of Physics Handbook
,
McGraw-Hill
,
New York
.
19.
Simmons
,
G.
, and
Wang
,
H.
, 1971,
Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook
,
MIT Press
,
Cambridge, MA
.
20.
Kittel
,
C.
, 1971,
Introduction to Solid State Physics
,
Wiley
,
New York
.
21.
Maier
,
K.
,
Peo
,
M.
,
Saile
,
B.
,
Schaefer
,
H. E.
, and
Seeger
,
A.
, 1979,
“High-Temperature Positron Annihilation and Vacancy Formation in Refractory Metals,”
Philos. Mag. A
,
40
, pp.
701
728
.
22.
Tietze
,
M.
,
Takaki
,
S.
,
Schwirtlich
,
I. A.
, and
Schultz
,
H.
, 1982,
Point Defects and Defect Interactions in Metals: Proceedings of the Yamada Conference V
,
North-Holland
, p.
265
.
23.
Kaufman
,
L.
, 1978,
“Coupled Phase Diagrams and Thermochemical Data for Transition Metal Binary Systems-III,”
CALPHAD
,
2
, pp.
117
146
.
You do not currently have access to this content.