A numerical method based on the extension of the variable material property method was developed to obtain the elasto-plastic stress field in a functionally graded (FG) rotating disk. The method was applied to estimate the stress field in a metal–ceramic functionally graded solid disk. To establish the validity of the proposed method, results were compared with finite element results. Unlike uniform rotating disks, where yielding starts from the disk center, plasticity in FG disks can originate at any point. The effect of different metal–ceramic grading patterns as well as the relative elastic moduli and densities of the ceramic and metallic constituents on the developed stresses were studied. Reinforcement of a metal disk with ceramic particles, in both elastic and plastic regimes, can significantly influence the mechanical response of the disk such as the stress distribution and the critical angular velocities corresponding to the onset of plasticity in the disk and plastic disk. Disks with increasing ceramic content from inner to outer radius showed a more uniform von Mises stress distribution for a fixed value of total ceramic content. In contrast, disks with decreasing ceramic content from inner to outer radius had the lowest outer edge displacement for a fixed value of total ceramic content.

References

References
1.
You
,
L. H.
, and
Zhang
,
J. J.
, 1999, “
Elastic-Plastic Stresses in a Rotating Solid Disk
,”
Int. J. Mech. Sci.
,
41
, pp.
269
282
.
2.
Güven
,
U.
, 1992, “
Elastic-Plastic Stresses in a Rotating Annular Disk of Variable Thickness and Variable Density
,”
Int. J. Mech. Sci.
,
34
, pp.
133
138
.
3.
You
,
L. H.
,
Tang
,
Y. Y.
,
Zhang
,
J. J.
, and
Zheng
,
C. Y.
, 2000, “
Numerical Analysis of Elastic-Plastic Rotating Disks With Arbitrary Variable Thickness and Density
,”
Int. J. Solids Struct.
,
37
, pp.
7809
7820
.
4.
Gamer
,
U.
, 1984, “
Elastic-Plastic Deformation of the Rotating Solid Disk
,”
Arch. Appl. Mech.
,
54
, pp.
345
354
.
5.
Jahed
,
H.
, and
Sherkati
,
S.
, 2000, “
Thermoplastic Analysis of Inhomogeneous Rotating Disk With Variable Thickness
,”
International Conference Fatigue 2000: Fatigue & Durability Assessment of Materials, Components and Structures
,
M. R.
Bache
,
P. A.
Blackmore
,
J.
Draper
,
J. H.
Edwards
,
P.
Roberts
, and
J. R.
Yates
, eds.,
Cambridge
,
United Kingdom
, pp.
229
238
.
6.
Eraslan
,
A. N.
, and
Orcan
,
Y.
, 2002, “
Elastic-Plastic Deformation of a Rotating Solid Disk of Exponentially Varying Thickness
,”
Mech. Mater.
,
34
, pp.
423
432
.
7.
Eraslan
,
A. N.
, and
Orcan
,
Y.
, 2002, “
On the Rotating Elastic-Plastic Solid Disks of Variable Thickness Having Concave Profiles
,”
Int. J. Mech. Sci.
,
44
, pp.
1445
1466
.
8.
Arslan
,
M. A.
, 2008, “
Flywheel Geometry Design for Improved Energy Storage Using Finite Element Analysis
,”
Mater. Des.
,
29
, pp.
514
518
.
9.
Bhavikatti
,
S. S.
, and
Ramakrishnan
,
C. V.
, 1980, “
Optimum Shape Design of Rotating Disks
,”
Comput. Struct.
,
11
, pp.
397
401
.
10.
Chern
,
J. M.
, and
Prager
,
W.
, 1970, “
Optimal Design of Rotating Disk for Given Radial Displacement of Edge
,”
J. Optim. Theory Appl.
,
6
, pp.
161
170
.
11.
Danfelt
,
E. L.
,
Hewes
,
S. A.
, and
Chou
,
T.-W.
, 1977, “
Optimization of Composite Flywheel Design
,”
Int. J. Mech. Sci.
,
19
, pp.
69
78
.
12.
Eby
,
D.
,
Averill
,
R.
,
Gelfand
,
B.
,
Punch
,
W.
,
Mathews
,
O.
, and
Goodman
,
E.
, 1997, “
An Injection Island GA for Flywheel Design Optimization
,”
5th European Congress on Intelligent Techniques and Soft Computing EUFIT ’97
,
A.
Verlag Mainz
, ed.,
Morgan Kaufmann
,
Aachen, Germany
, pp.
687
691
.
13.
Krack
,
M.
,
Secanell
,
M.
, and
Mertiny
,
P.
, 2010, “
Cost Optimization of Hybrid Composite Flywheel Rotors for Energy Storage
,”
Struct. Multidiscip. Optim.
,
41
, pp.
779
795
.
14.
Huang
,
J.
, and
Fadel
,
G. M.
, 2000, “
Heterogeneous Flywheel Modeling and Optimization
,”
Mater. Des.
,
21
, pp.
111
125
.
15.
Stump
,
F. V.
,
Paulino
,
G. H.
, and
Silva
,
C. N.
, 2005, “
Material Distribution Design of Functionally Graded Rotating Disks With Stress Constraint
,”
6th World Congresses of Structural and Multidisciplinary Optimization
,
Rio de Janeiro
,
Brazil
.
16.
Stump
,
F. V.
,
Silva
,
E. C. N.
, and
Paulino
,
G. H.
, 2007, “
Optimization of Material Distribution in Functionally Graded Structures With Stress Constraints
,”
Commun. Numer. Methods Eng.
,
23
, pp.
535
551
.
17.
Funabashi
,
M.
, 1997, “
Gradient Composites of Nickel Coated Carbon Fibre Filled Epoxy Resin Moulded Under Centrifugal Force
,”
Composites, Part A
,
28
, pp.
731
737
.
18.
Hashmi
,
S.
, and
Dwivedi
,
U.
, 2007, “
Estimation of Concentration of Particles in Polymerizing Fluid During Centrifugal Casting of Functionally Graded Polymer Composites
,”
J. Polym. Res.
,
14
, pp.
75
81
.
19.
Watanabe
,
Y.
,
Eryu
,
H.
, and
Matsuura
,
K.
, 2001, “
Evaluation of Three-Dimensional Orientation of Al3Ti Platelet in Al-Based Functionally Graded Materials Fabricated by a Centrifugal Casting Technique
,”
Acta Mater.
,
49
, pp.
775
783
.
20.
Xie
,
Y.
,
Liu
,
C.
,
Zhai
,
Y.
,
Wang
,
K.
, and
Ling
,
X.
, 2009, “
Centrifugal Casting Processes of Manufacturing In Situ Functionally Gradient Composite Materials of Al-19Si-5Mg Alloy
,”
Rare Met.
,
28
, pp.
405
411
.
21.
Bayat
,
M.
,
Sahari
,
B. B.
,
Saleem
,
M.
,
Ali
,
A.
, and
Wong
,
S. V.
, 2009, “
Bending Analysis of a Functionally Graded Rotating Disk Based on the First Order Shear Deformation Theory
,”
Appl. Math. Model.
,
33
, pp.
4215
4230
.
22.
Fazelzadeh
,
S. A.
,
Malekzadeh
,
P.
,
Zahedinejad
,
P.
, and
Hosseini
,
M.
, 2007, “
Vibration Analysis of Functionally Graded Thin-Walled Rotating Blades Under High Temperature Supersonic Flow Using the Differential Quadrature Method
,”
J. Sound Vib.
,
306
, pp.
333
348
.
23.
Güven
,
U.
,
çelik
,
A.
, and
Baykara
,
C.
, 2004, “
On Transverse Vibrations of Functionally Graded Polar Orthotropic Rotating Solid Disk With Variable Thickness and Constant Radial Stress
,”
J. Reinf. Plast. Compos.
,
23
, pp.
1279
1284
.
24.
Librescu
,
L.
,
Oh
,
S.-Y.
, and
Song
,
O.
, 2005, “
Thin-Walled Beams Made of Functionally Graded Materials and Operating in a High Temperature Environment: Vibration and Stability
,”
J. Therm. Stresses
,
28
, pp.
649
712
.
25.
Librescu
,
L.
,
Oh
,
S.-Y.
, and
Song
,
O.
, 2004, “
Spinning Thin-Walled Beams Made of Functionally Graded Materials: Modeling, Vibration and Instability
,”
Eur. J. Mech. A/Solids
,
23
, pp.
499
515
.
26.
Oh
,
S.-Y.
,
Librescu
,
L.
, and
Song
,
O.
, 2005, “
Vibration and Instability of Functionally Graded Circular Cylindrical Spinning Thin-Walled Beams
,”
J. Sound Vib.
,
285
, pp.
1071
1091
.
27.
Eraslan
,
A.
, and
Akis
,
T.
, 2006, “
On the Plane Strain and Plane Stress Solutions of Functionally Graded Rotating Solid Shaft and Solid Disk Problems
,”
Acta Mech.
,
181
, pp.
43
63
.
28.
Bayat
,
M.
,
Saleem
,
M.
,
Sahari
,
B. B.
,
Hamouda
,
A. M. S.
, and
Mahdi
,
E.
, 2008, “
Analysis of Functionally Graded Rotating Disks With Variable Thickness
,”
Mech. Res. Commun.
,
35
, pp.
283
309
.
29.
Durodola
,
J. F.
, and
Attia
,
O.
, 2000, “
Deformation and Stresses in Functionally Graded Rotating Disks
,”
Compos. Sci. Technol.
,
60
, pp.
987
995
.
30.
Horgan
,
C. O.
, and
Chan
,
A. M.
, 1999, “
The Stress Response of Functionally Graded Isotropic Linearly Elastic Rotating Disks
,”
J. Elast.
,
55
, pp.
219
230
.
31.
Kordkheili
,
S. A. H.
, and
Naghdabadi
,
R.
, 2007, “
Thermoelastic Analysis of a Functionally Graded Rotating Disk
,”
Compos. Struct.
,
79
, pp.
508
516
.
32.
Haghpanah Jahromi
,
B.
,
Farrahi
,
G. H.
,
Maleki
,
M.
,
Nayeb-Hashemi
,
H.
, and
Vaziri
,
A.
, 2009, “
Residual Stresses in Autofrettaged Vessel Made of Functionally Graded Material
,”
Eng. Struct.
,
31
, pp.
2930
2935
.
33.
Jahed
,
H.
, and
Dubey
,
R. N.
, 1997, “
An Axisymmetric Method of Elastic-Plastic Analysis Capable of Predicting Residual Stress Field
,”
ASME J. Pressure Vessel Technol.
,
119
, pp.
264
273
.
34.
Timoshenko
,
S. P.
, and
Goodier
,
J. N.
, 1970,
Theory of Elasticity
,
3rd ed.
,
McGraw-Hill
,
New York
.
35.
Budiansky
,
B.
, 1965, “
On the Elastic Moduli of Some Heterogeneous Materials
,”
J. Mech. Phys. Solids
,
13
, pp.
223
227
.
36.
Chaboche
,
J. L.
,
Kanouté
,
P.
, and
Roos
,
A.
, 2005, “
On the Capabilities of Mean-Field Approaches for the Description of Plasticity in Metal Matrix Composites
,”
Int. J. Plast.
,
21
, pp.
1409
1434
.
37.
Hill
,
R.
, 1965, “
A Self-Consistent Mechanics of Composite Materials
,”
J. Mech. Phys. Solids
,
13
, pp.
213
222
.
38.
Love
,
B. M.
, and
Batra
,
R. C.
, 2006, “
Determination of Effective Thermomechanical Parameters of a Mixture of Two Elastothermoviscoplastic Constituents
,”
Int. J. Plast.
,
22
, pp.
1026
1061
.
39.
Mori
,
T.
, and
Tanaka
,
K.
, 1973, “
Average Stress in Matrix and Average Elastic Energy of Materials With Misfitting Inclusions
,”
Acta Metall.
,
21
, pp.
571
574
.
40.
Saraev
,
D.
, and
Schmauder
,
S.
, 2003, “
Finite Element Modelling of Al/SiCp Metal Matrix Composites With Particles Aligned in Stripes—A 2D-3D Comparison
,”
Int. J. Plast.
,
19
, pp.
733
747
.
41.
Vena
,
P.
,
Gastaldi
,
D.
, and
Contro
,
R.
, 2008, “
Determination of the Effective Elastic-Plastic Response of Metal-Ceramic Composites
,”
Int. J. Plast.
,
24
, pp.
483
508
.
42.
Bao
,
G.
,
Hutchinson
,
J. W.
, and
McMeeking
,
R. M.
, 1991, “
Particle Reinforcement of Ductile Matrices Against Plastic Flow and Creep
,”
Acta Metall. Mater.
,
39
, pp.
1871
1882
.
43.
Branch
,
N. A.
,
Arakere
,
N. K.
,
Subhash
,
G.
, and
Klecka
,
M. A.
, 2011, “
Determination of Constitutive Response of Plastically Graded Materials
,”
Int. J. Plast.
,
27
, pp.
728
738
.
44.
Grujicic
,
M.
, and
Zhang
,
Y.
, 1998, “
Determination of Effective Elastic Properties of Functionally Graded Materials Using Voronoi Cell Finite Element Method
,”
Mater. Sci. Eng. A
,
251
, pp.
64
76
.
45.
Ju
,
J.
, and
Chen
,
T.
, 1994, “
Micromechanics and Effective Moduli of Elastic Composites Containing Randomly Dispersed Ellipsoidal Inhomogeneities
,”
Acta Mech.
,
103
, pp.
103
121
.
46.
Yin
,
H. M.
,
Paulino
,
G. H.
,
Buttlar
,
W. G.
, and
Sun
,
L. Z.
, 2007, “
Micromechanics-Based Thermoelastic Model for Functionally Graded Particulate Materials With Particle Interactions
,”
J. Mech. Phys. Solids
,
55
, pp.
132
160
.
47.
Yin
,
H. M.
,
Sun
,
L. Z.
, and
Paulino
,
G. H.
, 2004, “
Micromechanics-Based Elastic Model for Functionally Graded Materials With Particle Interactions
,”
Acta Mater.
,
52
, pp.
3535
3543
.
48.
Yin
,
H. M.
,
Sun
,
L. Z.
, and
Paulino
,
G. H.
, 2005, “
A Multiscale Framework for Elastic Deformation of Functionally Graded Composites
,”
Mater. Sci. Forum
,
492–493
, pp.
391
396
.
49.
Suresh
,
S.
, and
Mortensen
,
A.
, 1998,
Fundamentals of Functionally Graded Materials
,
IOM Communications Ltd.
,
London
.
50.
Gu
,
Y.
,
Nakamura
,
T.
,
Prchlik
,
L.
,
Sampath
,
S.
, and
Wallace
,
J.
, 2003, “
Micro-Indentation and Inverse Analysis to Characterize Elastic-Plastic Graded Materials
,”
Mater. Sci. Eng. A
,
345
, pp.
223
233
.
You do not currently have access to this content.