The symplectic dual approach is employed to obtain the analytical solutions of displacements and stresses around the mixed-mode Dugdale crack tip. Based on the analytical solutions, a novel singular finite element is developed to study the problem. The singular finite element can be applied to determine the sizes of crack tip opening/sliding displacement of a mixed-mode Dugdale model. Numerical results obtained by the present method show excellent agreement with the existing analytical solutions.

References

References
1.
Dugdale
,
D. S.
, 1960, “
Yielding of Steel Sheet Containing Slits
,”
J. Mech. Phys. Solids
,
8
, pp.
100
108
.
2.
Barenblatt
,
G. I.
, 1962, “
The Mathematical Theory of Equilibrium Cracks in Brittle Fracture
,”
Adv. Appl. Mech.
,
7
, pp.
55
129
.
3.
Unger
,
D. J.
, 2007, “
Numerical Plane Stress Elastic-Perfectly Plastic Crack Analysis Under Tresca Yield Condition With Comparison to Dugdale Plastic Strip Model
,”
Mech. Res. Commun.
,
34
, pp.
325
330
.
4.
Howard
,
I. C.
, and
Otter
,
N. R.
, 1975, “
On the Elastic-Plastic Deformation of a Sheet Containing an Edge Crack
,”
J. Mech. Phys. Solids
,
23
, pp.
139
149
.
5.
Narita
,
F.
, and
Shindo
,
Y.
, 2001, “
Mode I Crack Growth Rate for Yield Strip Model of a Narrow Piezoelectric Ceramic Body
,”
Theor. Appl. Fract. Mech.
,
36
, pp.
73
85
.
6.
Ferdjani
,
H.
, 2009, “
Study of an Infinite Strip Containing a Dugdale Crack Parallel to its Boundaries Under Antiplane Shear Loading
,”
Eur. J. Mech. A/Solids
,
28
, pp.
347
353
.
7.
Jing
,
X.
,
Chaiyat
,
S.
,
Keer
,
L. M.
, and
Kiattikomol
,
K.
, 2008, “
Refined Dugdale Plastic Zones of an External Circular Crack
,”
J. Mech. Phys. Solids
,
56
, pp.
1127
1146
.
8.
Neimitz
,
A.
, 2004, “
Modification of Dugdale Model to Include the Work Hardening and In- and Out-of-Plane Constraints
,”
Eng. Fract. Mech.
,
71
, pp.
1585
1600
.
9.
Becker
,
W.
, and
Gross
,
D.
, 1988, “
About the Dugdale Crack Under Mixed Mode Loading
,”
Int. J. Fract.
,
37
, pp.
163
170
.
10.
Nicholson
,
D. W.
, 1993, “
On a Mixed-Mode Dugdale Model
,”
Acta Mech.
,
98
, pp.
213
219
.
11.
Crapps
,
J.
, and
Daniewicz
,
S. R.
, 2010, “
Weight Function Based Dugdale Model for Mixed-Mode Crack Problems With Arbitrary Crack Surface Tractions
,”
Eng. Fract. Mech.
,
77
, pp.
793
802
.
12.
Panasyuk
,
V. V.
, and
Savruk
,
M. P.
, 1992, “
Plastic Strip Model in Elastic–Plastic Problems of Fracture Mechanics
,”
Adv. Mech.
,
15
, pp.
123
147
.
13.
Li
,
J. A.
, 1997, “
Dugdale–Barenblatt Model for a Plane Stress Semi-Infinite Crack Under Mixed Mode Concentrated Forces
,”
Int. J. Fract.
,
88
, pp.
153
166
.
14.
Chernyakov
,
Y. A.
,
Grychanyuk
,
V.
, and
Tsukrov
,
I.
, 2003, “
Stress–Strain Relations in Elastoplastic Solids With Dugdale-Type Cracks
,”
Eng. Fract. Mech.
,
70
, pp.
2163
2174
.
15.
Liu
,
X. H.
,
Suo
,
Z.
, and
Ma
,
Q.
, 1999, “
Split Singularities: Stress Field Near the Edge of a Silicon Die on a Polymer Substrate
,”
Acta Mater.
,
47
, pp.
67
76
.
16.
Chen
,
M. C.
, and
Sze
,
K. Y.
, 2001, “
A Novel Hybrid Finite Element Analysis of Bimaterial Wedge Problems
,”
Eng. Fract. Mech.
,
68
, pp.
1463
1476
.
17.
Ping
,
X. C.
,
Chen
,
M. C.
, and
Xie
,
J. L.
, 2008, “
Singular Stress Analyses of V-Notched Anisotropic Plates Based on a Novel Finite Element Method
,”
Eng. Fract. Mech.
,
75
, pp.
3819
3838
.
18.
Zhong
,
W. X.
, 1995,
A New Systematic Me
t
hodology for Theory of Elasticity
,
Dalian University of Technology Press
,
Dalian
(in Chinese).
19.
Yao
,
W. A.
,
Zhong
,
W. X.
, and
Lim
,
C.W.
, 2009,
Symplectic Elasticity
,
World Scientific
,
Singapore
.
20.
Leung
,
A. Y. T.
,
Xu
,
X. S.
,
Zhou
,
Z. H.
, and
Wu
,
Y. F.
, 2009, “
Analytic Stress Intensity Factors for Finite Elastic Disk Using Symplectic Expansion
,”
Eng. Frac. Mech.
,
76
, pp.
1866
1882
.
21.
Wang
,
J. S.
, and
Qin
,
Q. H.
, 2007, “
Symplectic Model for Piezoelectric Wedges and Its Application in Analysis of Electroelastic Singularities
,”
Philos. Mag.
,
87
, pp.
225
251
.
22.
Zhang
,
H. W.
, and
Zhong
.
W. X.
, 2003, “
Hamiltonian Principle Based Stress Singularity Analysis Near Crack Corners of Multi-Material Junctions
,”
Int. J. Solids Struct.
,
40
, pp.
493
510
.
You do not currently have access to this content.