This paper reports an anomaly in the yield strength of dislocation interacting with stacking fault tetrahedra (SFT) in Cu, reveals atomic mechanisms that are responsible for the anomaly, and further shows the thermodynamic driving force for the atomic mechanisms to prevail. Instead of monotonically increasing with the area of intersection cross-section, the yield strength first increases and then decreases with the area. The decrease, or the anomaly, is due to a change of atomic mechanism of the interactions—the SFT goes through a morphological transformation. The thermodynamic driving force for the transformation derives from the competition between the elastic energy of dislocations and the stacking fault energy.
Issue Section:
Research Papers
References
1.
Bacon
, D. J.
, Osetsky
, Y. N.
, Rodney
, D.
, Hirth
, J. P.
, and Kubin
, L.
, 2009, Dislocation-Obstacle Interactions at the Atomic Level in Dislocations in Solids
, Elsevier
, North-Holland
, Chap. 88.2.
Hirth
, J. P.
, and Lothe
, J.
, 1982, Theory of Dislocations
, John Wiley and Sons, Inc.
, New York.3.
Matsukawa
, Y.
, Osetsky
, Y. N.
, Stoller
, R. E.
, and Zinkle
, S. J.
, 2006, “Destruction Processes of Large Stacking Fault Tetrahedra Induced by Direct Interaction With Gliding Dislocations
,” J. Nucl. Mater.
, 351
(1–3
), pp. 285
–294
. 4.
Matsukawa
, Y.
, and Zinkle
, S. J.
, 2004, “Dynamic Observation of the Collapse Process of a Stacking Fault Tetrahedron by Moving Dislocations
,” J. Nucl. Mater.
, 329–333
, pp. 919
–923
. 5.
Hatano
, T.
, 2006, “Dynamics of a Dislocation Bypassing an Impenetrable Precipitate: The Hirsch Mechanism Revisited
,” Phys. Rev. B
, 74
(2
), p. 020102
. 6.
Voskoboinikov
, R. E.
, Osetsky
, Y. N.
, and Bacon
, D. J.
, 2008, “Computer Simulation of Primary Damage Creation in Displacement Cascades in Copper. I. Defect Creation and Cluster Statistics
,” J. Nucl. Mater.
, 377
(2
), pp. 385
–395
. 7.
Bacon
, D. J.
, Gao
, F.
, and Osetsky
, Y. N.
, 2000, “The Primary Damage State in FCC, BCC and HCP Metals as Seen in Molecular Dynamics Simulations
,” J. Nucl. Mater.
, 276
(1–3
), pp. 1
–12
. 8.
Bacon
, D. J.
, Osetsky
, Y. N.
, Stoller
, R.
, and Voskoboinikov
, R. E.
, 2003, “MD Description of Damage Production in Displacement Cascades in Copper and α-Iron
,” J. Nucl. Mater.
, 323
(2–3
), pp. 152
–162
. 9.
Huang
, H. C.
, and Ghoniem
, N.
, 1993, “Neutron Displacement Damage Cross Sections for SiC
,” J. Nucl. Mater.
, 199
(3
), pp. 221
–230
. 10.
Huang
, H. C.
, and Ghoniem
, N.
, 1994, “Molecular Dynamics Calculations of Defect Energetics in β-SiC
,” J. Nucl. Mater.
, 212–215
(Part 1), pp. 148
–153
. 11.
Singh
, B. N.
, Golubov
, S. I.
, Trinkaus
, H.
, Edwards
, D. J.
, and Eldrup
, M.
, 2004, “Review: Evolution of Stacking Fault Tetrahedra and Its Role in Defect Accumulation Under Cascade Damage Conditions
,” J. Nucl. Mater.
, 328
(2–3
), pp. 77
–87
. 12.
Osetsky
, Y. N.
, Stoller
, R. E.
, and Matsukawa
, Y.
, 2004, “Dislocation-Stacking Fault Tetrahedron Interaction: What Can We Learn from Atomic-Scale Modelling
,” J. Nucl. Mater.
, 329–333
, pp. 1228
–1232
. 13.
Osetsky
, Y. N.
, Stoller
, R. E.
, Rodney
, D.
, and Bacon
, D. J.
, 2005, “Atomic-Scale Details of Dislocation-Stacking Fault Tetrahedra Interaction
,” Mater. Sci. Eng.
, A, 400–401
, pp. 370
–373
.14.
Osetsky
, Y. N.
, Rodney
, D.
, and Bacon
, D. J.
, 2006, “Atomic-Scale Study of Dislocation Stacking Fault Tetrahedron Interactions. Part I: Mechanisms
,” Philos. Mag.
, 86
(16
), pp. 2295
–2313
. 15.
Marian
, J.
, Martínez
, E.
, Lee
, H. J.
, and Wirth
, B. D
2009, “Micro/Meso-Scale Computational Study of Dislocation Stacking Fault Tetrahedron Interactions in Copper
,” J. Mater. Res.
, 24
(12
), pp. 3628
–3635
.16.
Martinez
, E.
, Marian
, J.
, Arsenlis
, A.
, Victoria
, M.
, and Perlado
, J. M.
, 2008, “A Dislocation Dynamics Study of the Strength of Stacking Fault Tetrahedra. Part I: Interactions With Screw Dislocations
,” Philos. Mag.
, 88
(6
), pp. 809
–840
. 17.
Martinez
, E.
, Marian
, J.
, and Perlado
, J. M.
, 2008, “A Dislocation Dynamics Study of the Strength of Stacking Fault Tetrahedra. Part II: Interactions With Mixed and Edge Dislocations
,” Philos. Mag.
, 88
(6
), pp. 841
–863
. 18.
Lee
, H. J.
, Shim
, J. H.
, and Wirth
, B. D.
, 2007, “Molecular Dynamics Simulation of Screw Dislocation Interaction With Stacking Fault Tetrahedron in Face-Centered Cubic Cu
,” J. Mater. Res.
, 22
(10
), pp. 2758
–2769
. 19.
Plimpton
, S.
, 1995, “Fast Parallel Algorithms for Short-Range Molecular Dynamics
,” J. Comput. Phys.
, 117
(1
), pp. 1
–19
. 20.
Wirth
, B. D.
, Bulatov
, V.
, and Diaz de la Rubia
, T.
, 2002, “Dislocation-Stacking Fault Tetrahedron Interactions in Cu
,” ASME J. Eng. Mater. Technol.
, 124
, pp. 329
–334
. 21.
Mishin
, Y.
, Mehl
, M. J.
, Papaconstantopoulos
, D. A.
, Voter
, A. F.
, and Kress
, J. D.
, 2001, “Structural Stability and Lattice Defects in Copper: Ab initio, Tight-Binding, and Embedded-Atom Calculations
,” Phys. Rev. B
, 63
(22
), p. 224106
. 22.
Lee
, H. J.
, and Wirth
, B. D.
, 2009, “Molecular Dynamics Simulation of the Interaction Between a Mixed Dislocation and a Stacking Fault Tetrahedron
,” Philos. Mag.
, 89
(9
), pp. 821
–841
. 23.
Parrinello
, M.
, and Rahman
, A.
, 1981, “Polymorphic Transitions in Single Crystals: A New Molecular Dynamics Method
,” J. Appl. Phys.
, 52
(12
), pp. 7182
–7190
.24.
Hoover
, W. G.
, 1985, “Canonical Dynamics: Equilibrium Phase-Space Distributions
,” Phys. Rev. A
, 31
(3
), p. 1695
–1697
. 25.
Kadoyoshi
, T.
, Kaburaki
, H.
, Shimizu
, F.
, Kimizuka
, H.
, Jitsukawa
, S.
, and Li
, J.
, 2007, “Molecular Dynamics Study on the Formation of Stacking Fault Tetrahedra and Unfaulting of Frank Loops in FCC Metals
,” Acta Mater.
, 55
(9
), pp. 3073
–3080
. 26.
Faken
, D.
, and Jónsson
, H.
, 1994, “Systematic Analysis of Local Atomic Structure Combined With 3D Computer Graphics
,” Comput. Mater. Sci.
, 2
(2
), pp. 279
–286
. 27.
Tsuzuki
, H.
, Branicio
, P. S.
, and Rino
, J. P.
, 2007, “Structural Characterization of Deformed Crystals by Analysis of Common Atomic Neighborhood
,” Comput. Phys. Commun.
, 177
(6
), pp. 518
–523
. 28.
Jin
, J. F.
, and Huang
, H. C.
, 2011, “Elimination of Stacking Fault Tetrahedron via Strain
,” (unpublished).Copyright © 2012
by American Society of Mechanical Engineers
You do not currently have access to this content.