This paper reports an anomaly in the yield strength of dislocation interacting with stacking fault tetrahedra (SFT) in Cu, reveals atomic mechanisms that are responsible for the anomaly, and further shows the thermodynamic driving force for the atomic mechanisms to prevail. Instead of monotonically increasing with the area of intersection cross-section, the yield strength first increases and then decreases with the area. The decrease, or the anomaly, is due to a change of atomic mechanism of the interactions—the SFT goes through a morphological transformation. The thermodynamic driving force for the transformation derives from the competition between the elastic energy of dislocations and the stacking fault energy.

References

1.
Bacon
,
D. J.
,
Osetsky
,
Y. N.
,
Rodney
,
D.
,
Hirth
,
J. P.
, and
Kubin
,
L.
, 2009,
Dislocation-Obstacle Interactions at the Atomic Level in Dislocations in Solids
,
Elsevier
,
North-Holland
, Chap. 88.
2.
Hirth
,
J. P.
, and
Lothe
,
J.
, 1982,
Theory of Dislocations
,
John Wiley and Sons, Inc.
, New York.
3.
Matsukawa
,
Y.
,
Osetsky
,
Y. N.
,
Stoller
,
R. E.
, and
Zinkle
,
S. J.
, 2006, “
Destruction Processes of Large Stacking Fault Tetrahedra Induced by Direct Interaction With Gliding Dislocations
,”
J. Nucl. Mater.
,
351
(
1–3
), pp.
285
294
.
4.
Matsukawa
,
Y.
, and
Zinkle
,
S. J.
, 2004, “
Dynamic Observation of the Collapse Process of a Stacking Fault Tetrahedron by Moving Dislocations
,”
J. Nucl. Mater.
,
329–333
, pp.
919
923
.
5.
Hatano
,
T.
, 2006, “
Dynamics of a Dislocation Bypassing an Impenetrable Precipitate: The Hirsch Mechanism Revisited
,”
Phys. Rev. B
,
74
(
2
), p.
020102
.
6.
Voskoboinikov
,
R. E.
,
Osetsky
,
Y. N.
, and
Bacon
,
D. J.
, 2008, “
Computer Simulation of Primary Damage Creation in Displacement Cascades in Copper. I. Defect Creation and Cluster Statistics
,”
J. Nucl. Mater.
,
377
(
2
), pp.
385
395
.
7.
Bacon
,
D. J.
,
Gao
,
F.
, and
Osetsky
,
Y. N.
, 2000, “
The Primary Damage State in FCC, BCC and HCP Metals as Seen in Molecular Dynamics Simulations
,”
J. Nucl. Mater.
,
276
(
1–3
), pp.
1
12
.
8.
Bacon
,
D. J.
,
Osetsky
,
Y. N.
,
Stoller
,
R.
, and
Voskoboinikov
,
R. E.
, 2003, “
MD Description of Damage Production in Displacement Cascades in Copper and α-Iron
,”
J. Nucl. Mater.
,
323
(
2–3
), pp.
152
162
.
9.
Huang
,
H. C.
, and
Ghoniem
,
N.
, 1993, “
Neutron Displacement Damage Cross Sections for SiC
,”
J. Nucl. Mater.
,
199
(
3
), pp.
221
230
.
10.
Huang
,
H. C.
, and
Ghoniem
,
N.
, 1994, “
Molecular Dynamics Calculations of Defect Energetics in β-SiC
,”
J. Nucl. Mater.
,
212–215
(Part 1), pp.
148
153
.
11.
Singh
,
B. N.
,
Golubov
,
S. I.
,
Trinkaus
,
H.
,
Edwards
,
D. J.
, and
Eldrup
,
M.
, 2004, “
Review: Evolution of Stacking Fault Tetrahedra and Its Role in Defect Accumulation Under Cascade Damage Conditions
,”
J. Nucl. Mater.
,
328
(
2–3
), pp.
77
87
.
12.
Osetsky
,
Y. N.
,
Stoller
,
R. E.
, and
Matsukawa
,
Y.
, 2004, “
Dislocation-Stacking Fault Tetrahedron Interaction: What Can We Learn from Atomic-Scale Modelling
,”
J. Nucl. Mater.
,
329–333
, pp.
1228
1232
.
13.
Osetsky
,
Y. N.
,
Stoller
,
R. E.
,
Rodney
,
D.
, and
Bacon
,
D. J.
, 2005, “
Atomic-Scale Details of Dislocation-Stacking Fault Tetrahedra Interaction
,”
Mater. Sci. Eng.
, A,
400–401
, pp.
370
373
.
14.
Osetsky
,
Y. N.
,
Rodney
,
D.
, and
Bacon
,
D. J.
, 2006, “
Atomic-Scale Study of Dislocation Stacking Fault Tetrahedron Interactions. Part I: Mechanisms
,”
Philos. Mag.
,
86
(
16
), pp.
2295
2313
.
15.
Marian
,
J.
,
Martínez
,
E.
,
Lee
,
H. J.
, and
Wirth
,
B. D
2009, “
Micro/Meso-Scale Computational Study of Dislocation Stacking Fault Tetrahedron Interactions in Copper
,”
J. Mater. Res.
,
24
(
12
), pp.
3628
3635
.
16.
Martinez
,
E.
,
Marian
,
J.
,
Arsenlis
,
A.
,
Victoria
,
M.
, and
Perlado
,
J. M.
, 2008, “
A Dislocation Dynamics Study of the Strength of Stacking Fault Tetrahedra. Part I: Interactions With Screw Dislocations
,”
Philos. Mag.
,
88
(
6
), pp.
809
840
.
17.
Martinez
,
E.
,
Marian
,
J.
, and
Perlado
,
J. M.
, 2008, “
A Dislocation Dynamics Study of the Strength of Stacking Fault Tetrahedra. Part II: Interactions With Mixed and Edge Dislocations
,”
Philos. Mag.
,
88
(
6
), pp.
841
863
.
18.
Lee
,
H. J.
,
Shim
,
J. H.
, and
Wirth
,
B. D.
, 2007, “
Molecular Dynamics Simulation of Screw Dislocation Interaction With Stacking Fault Tetrahedron in Face-Centered Cubic Cu
,”
J. Mater. Res.
,
22
(
10
), pp.
2758
2769
.
19.
Plimpton
,
S.
, 1995, “
Fast Parallel Algorithms for Short-Range Molecular Dynamics
,”
J. Comput. Phys.
,
117
(
1
), pp.
1
19
.
20.
Wirth
,
B. D.
,
Bulatov
,
V.
, and
Diaz de la Rubia
,
T.
, 2002, “
Dislocation-Stacking Fault Tetrahedron Interactions in Cu
,”
ASME J. Eng. Mater. Technol.
,
124
, pp.
329
334
.
21.
Mishin
,
Y.
,
Mehl
,
M. J.
,
Papaconstantopoulos
,
D. A.
,
Voter
,
A. F.
, and
Kress
,
J. D.
, 2001, “
Structural Stability and Lattice Defects in Copper: Ab initio, Tight-Binding, and Embedded-Atom Calculations
,”
Phys. Rev. B
,
63
(
22
), p.
224106
.
22.
Lee
,
H. J.
, and
Wirth
,
B. D.
, 2009, “
Molecular Dynamics Simulation of the Interaction Between a Mixed Dislocation and a Stacking Fault Tetrahedron
,”
Philos. Mag.
,
89
(
9
), pp.
821
841
.
23.
Parrinello
,
M.
, and
Rahman
,
A.
, 1981, “
Polymorphic Transitions in Single Crystals: A New Molecular Dynamics Method
,”
J. Appl. Phys.
,
52
(
12
), pp.
7182
7190
.
24.
Hoover
,
W. G.
, 1985, “
Canonical Dynamics: Equilibrium Phase-Space Distributions
,”
Phys. Rev. A
,
31
(
3
), p.
1695
1697
.
25.
Kadoyoshi
,
T.
,
Kaburaki
,
H.
,
Shimizu
,
F.
,
Kimizuka
,
H.
,
Jitsukawa
,
S.
, and
Li
,
J.
, 2007, “
Molecular Dynamics Study on the Formation of Stacking Fault Tetrahedra and Unfaulting of Frank Loops in FCC Metals
,”
Acta Mater.
,
55
(
9
), pp.
3073
3080
.
26.
Faken
,
D.
, and
Jónsson
,
H.
, 1994, “
Systematic Analysis of Local Atomic Structure Combined With 3D Computer Graphics
,”
Comput. Mater. Sci.
,
2
(
2
), pp.
279
286
.
27.
Tsuzuki
,
H.
,
Branicio
,
P. S.
, and
Rino
,
J. P.
, 2007, “
Structural Characterization of Deformed Crystals by Analysis of Common Atomic Neighborhood
,”
Comput. Phys. Commun.
,
177
(
6
), pp.
518
523
.
28.
Jin
,
J. F.
, and
Huang
,
H. C.
, 2011, “
Elimination of Stacking Fault Tetrahedron via Strain
,” (unpublished).
You do not currently have access to this content.