A microstructure-based finite element analysis model was developed to predict the effective elastic property of cellulose nanowhisker reinforced all-cellulose composite. Analysis was based on the microstructure synthesized with assumption on volume fraction, size, and orientation distribution of cellulose nanowhiskers. Simulation results demonstrated some interesting discovery: With the increase of aspect ratio, the effective elastic modulus increases in isotropic microstructure. The elastic property anisotropy increases with the aspect ratio and anisotropy of nanowhisker orientation. Simulation results from microstructure-based finite element analysis agree well with experimental results, comparing with other homogenization methods: upper bound, lower bound, and self-consistent models. Capturing the anisotropic elastic property, the microstructure-based finite element analysis demonstrated the capability in guiding materials design to improve effective properties.

References

References
1.
Hashin
,
Z.
, and
Shtrikman
,
S.
, 1962, “
On Some Variational Principles in Anisotropic and Nonhomogeneous Elasticity
,”
J. Mech. Phys. Solids
,
10
, pp.
335
342
.
2.
Hashin
,
Z.
, and
Shtrikman
,
S.
, 1963, “
A Variational Approach to the Theory of the Elastic Behaviour of Multiphase Materials
,”
J. Mech. Phys. Solids
,
11
, pp.
127
140
.
3.
Hill
, 1965, “
A Self-Consistent Mechanics of Composite Materials
,”
J. Mech. Phys. Solids
,
13
, pp.
213
222
.
4.
Lebensohn
,
R.
, and
Tomé
,
C.
, 1993, “
A Self-Consistent Anisotropic Approach for the Simulation of Plastic Deformation and Texture Development of Polycrystals: Application to Zirconium Alloys
,”
Acta Metallurg. Mater.
,
41
, pp.
2611
2624
.
5.
Reuss
,
A.
, 1929, “
Berechnung Der Fliessgrenze Von Mischkristallen Auf Grund Der Plastizitatsbedingung Fur Einkristalle
,”
Math Mech.
,
9
, pp.
49
58
.
6.
Voigt
, 1889, “
Uber Die Beziehung Zwischen Den Beiden Elastizitatskonstanten Isotroper Kroper
,”
Wied. Ann.
,
38
, pp.
573
587
.
7.
Deuerling
,
J. M.
,
Yue
,
W.
,
Espinoza Orías
,
A. A.
, and
Roeder
,
R. K.
, 2009, “
Specimen-Specific Multi-Scale Model for the Anisotropic Elastic Constants of Human Cortical Bone
,”
J. Biomech.
,
42
, pp.
2061
2067
.
8.
Yue
,
W.
, and
Roeder
,
R. K.
, 2006, “
Micromechanical Model for Hydroxyapatite Whisker Reinforced Polymer Biocomposites
,”
J. Mater. Res.
,
21
, pp.
2136
2145
.
9.
Saheli
,
G.
,
Garmestani
,
H.
, and
Adams
,
B.
, 2004, “
Microstructure Design of a Two Phase Composite Using Two-Point Correlation Functions
,”
J. Comput.-Aided Mater. Design
,
11
, pp.
103
115
.
10.
Saheli
,
G.
,
Garmestani
,
H.
, and
Gokhale
,
A.
, 2008, “
Homogenization Relations for Elastic Properties of Two-Phase Composites Using Two-Point Statistical Functions
,”
J. Mech. Mater. Struct.
,
1
, pp.
85
106
.
11.
Choi
,
K.
,
Soulami
,
A.
,
Liu
,
W.
,
Sun
,
X.
, and
Khaleel
,
M.
, 2010, “
Influence of Various Material Design Parameters on Deformation Behaviors of TRIP Steels
,”
Comput. Mater. Sci.
,
50
(
2
), pp.
720
730
.
12.
Choi
,
K. S.
,
Liu
,
W. N.
,
Sun
,
X.
, and
Khaleel
,
M. A.
, 2009, “
Microstructure-Based Constitutive Modeling of Trip Steel: Prediction of Ductility and Failure Modes under Different Loading Conditions
,”
Acta Mater.
,
57
, pp.
2592
2604
.
13.
Sun
,
X.
,
Choi
,
K. S.
,
Liu
,
W. N.
, and
Khaleel
,
M. A.
, 2009, “
Predicting Failure Modes and Ductility of Dual Phase Steels Using Plastic Strain Localization
,”
Int. J. Plasticity
,
25
, pp.
1888
1909
.
14.
Chawla
,
N.
,
Sidhu
,
R.
, and
Ganesh
,
V.
, 2006, “
Three-Dimensional Visualization and Microstructure-Based Modeling of Deformation in Particle-Reinforced Composites
,”
Acta Mater.
,
54
, pp.
1541
1548
.
15.
Hine
,
P. J.
,
Rudolf Lusti
,
H.
, and
Gusev
,
A. A.
, 2002, “
Numerical Simulation of the Effects of Volume Fraction, Aspect Ratio and Fibre Length Distribution on the Elastic and Thermoelastic Properties of Short Fibre Composites
,”
Compos. Sci. Technol.
,
62
, pp.
1445
1453
.
16.
Gusev
,
A. A.
,
Hine
,
P. J.
, and
Ward
,
I. M.
, 2000, “
Fiber Packing and Elastic Properties of a Transversely Random Unidirectional Glass/Epoxy Composite
,”
Compos. Sci. Technol.
,
60
, pp.
535
541
.
17.
Lusti
,
H. R.
,
Hine
,
P. J.
, and
Gusev
,
A. A.
, 2002,
“Direct Numerical Predictions for the Elastic and Thermoelastic Properties of Short Fibre Composites
,”
Composites Science and Technology
,
62
, pp.
1927
1934
.
18.
Cui
,
B. Z.
,
Han
,
K.
,
Garmestani
,
H.
,
Su
,
J. H.
,
Schneider-Muntau
,
H. J.
, and
Liu
,
J. P.
, 2005, “
Enhancement of Exchange Coupling and Hard Magnetic Properties in Nanocomposites by Magnetic Annealing
,”
Acta Mater.
,
53
, pp.
4155
4161
.
19.
Zuluaga
,
R.
,
Putaux
,
J. L.
,
Restrepo
,
A.
,
Mondragon
,
I.
, and
Ganan
,
P.
, 2007, “
Cellulose Microfibrils from Banana Farming Residues: Isolation and Characterization
,”
Cellulose
,
14
, pp.
585
592
.
20.
Hepworth
,
D. G.
, and
Bruce
,
D. M.
, 2000, “
A Method of Calculating the Mechanical Properties of Nanoscopic Plant Cell Wall Components from Tissue Properties
,”
J. Mater. Sci.
,
35
, pp.
5861
5865
.
21.
Hsieh
,
Y. C.
,
Yano
,
H.
,
Nogi
,
M.
, and
Eichhorn
,
S. J.
, 2008, “
An Estimation of the Young’s Modulus of Bacterial Cellulose Filaments
,”
Cellulose
,
15
, pp.
507
513
.
22.
Bondeson
,
D.
,
Mathew
,
A.
, and
Oksman
,
K.
, 2006, “
Optimization of the Isolation of Nanocrystals from Microcrystalline Cellulose by Acid Hydrolysis
,”
Cellulose
,
13
, pp.
171
180
.
23.
Li
,
D.
,
Liu
,
Z.
,
Al-Haik
,
M.
,
Tehrani
,
M.
,
Murray
,
F.
,
Tannenbaum
,
R.
, and
Garmestani
,
H.
, 2010, “
Magnetic Alignment of Cellulose Nanowhiskers in an All-Cellulose Composite
,”
Polym. Bull.
,
65
, pp.
635
642
.
24.
Pranger
,
L.
, and
Tannenbaum
,
R.
, 2008, “
Biobased Nanocomposites Prepared by in Situ Polymerization of Furfuryl Alcohol with Cellulose Whiskers or Montmorillonite Clay
,”
Macromolecules
,
41
, pp.
8682
8687
.
25.
Bengtsson
,
M.
,
Le Baillif
,
M.
, and
Oksman
,
K.
, 2007, “
Extrusion and Mechanical Properties of Highly Filled Cellulose Fibre-Polypropylene Composites
,”
Compos. Part A. Appl. Sci. Manuf.
,
38
, pp.
1922
1931
.
26.
Dufresne
,
A.
,
Cavaille
,
J. Y.
, and
Helbert
,
W.
, 1997, “
Thermoplastic Nanocomposites Filled with Wheat Straw Cellulose Whiskers. 2. Effect of Processing and Modeling
,”
Polym. Compos.
,
18
, pp.
198
210
.
27.
Gindl
,
W.
, and
Keckes
,
J.
, 2005, “
All-Cellulose Nanocomposite
,”
Polymer
,
46
, pp.
10221
10225
.
28.
Lahiji
,
R. R.
,
Xu
,
X.
,
Reifenberger
,
R.
,
Raman
,
A.
,
Rudie
,
A.
, and
Moon
,
R. J.
, 2010, “
Atomic Force Microscopy Characterization of Cellulose Nanocrystals
,”
Langmuir
,
26
, pp.
4480
4488
.
29.
Tashiro
,
K.
, and
Kobayashi
,
M.
, 1991, “
Theoretical Evaluation of Three-Dimensional Elastic Constants of Native and Regenerated Celluloses: Role of Hydrogen Bonds
,”
Polymer
,
32
, pp.
1516
1526
.
30.
Tschopp
,
M.
,
Wilks
,
G.
, and
Spowart
,
J.
, 2008, “
Multi-Scale Characterization of Orthotropic Microstructures
,”
Modell. Simul. Mater. Sci. Eng.
,
16
, pp.
065009
.
31.
Wilks
,
G.
,
Tschopp
,
M.
, and
Spowart
,
J.
, 2010, “
Multi-Scale Characterization of Inhomogeneous Morphologically Textured Microstructures
,”
Mater. Sci. Eng. A
,
527
, pp.
883
889
.
32.
Li
,
D.
,
Baniassadi
,
M.
,
Garmestani
,
H.
,
Ahzi
,
S.
,
Taha
,
R.
, and
Ruch
,
D.
, 2010, “
3d Reconstruction of Carbon Nanotube Composite Microstructure Using Correlation Functions
,”
J. Comput. Theor. Nanosci.
,
7
, pp.
1462
1468
.
33.
Mikdam
,
A.
,
Makradi
,
A.
,
Ahzi
,
S.
,
Garmestani
,
H.
,
Li
,
D.
, and
Remond
,
Y.
, 2010, “
Statistical Continuum Theory for the Effective Conductivity of Fiber Filled Polymer Composites: Effect of Orientation Distribution and Aspect Ratio
,”
Compos. Sci. Technol.
,
70
, pp.
510
517
.
You do not currently have access to this content.