In this study, the effect of moderate magnetic fields on the microstructure of a structural epoxy system was investigated. The changes in the microstructure have been quantitatively investigated using wide angle X-ray diffraction (WAXD) and pole figure analysis. The mechanical properties (modulus, hardness, and strain rate sensitivity parameter) of the epoxy system annealed in the magnetic field were probed with the aid of instrumented nanoindentation, and the results are compared to the reference epoxy sample. To further examine the creep response of the magnetically annealed and reference samples, short 45 min duration creep tests were carried out. An equivalent to the macroscale creep compliance was calculated using the aforementioned nanocreep data. Using the continuous contact compliance (CCC) analysis, the phase lag angle, tan (δ), between the displacement and applied force in an oscillatory nanoindentation test was measured for both neat and magnetically annealed systems through which the effect of low magnetic fields on the viscoelastic properties of the epoxy was invoked. The comparison of the creep strain rate sensitivity parameter, A/d(0), from short term(80 s), creep tests and the creep compliance J(t) from the long term (2700 s) creep tests with the tan (δ) suggests that former parameter is a more useful comparative creep parameter than the creep compliance. The results of this investigation reveal that for the epoxy system cured under low magnetic fields both the quasi-static and viscoelastic mechanical properties have been improved.

References

References
1.
Al-Haik
,
M. S.
,
Vaghar
,
M.
,
Shahaway
,
M.
, and
Garmestani
,
H.
, 2001, “
Viscoplastic Analysis of Structural Polymer Composites Using Stress-Relaxation and Creep Data
,”
Composites, Part B
,
32
, pp.
165
172
.
2.
Camponeschi
,
E.
,
Vance
,
R.
,
Al-Haik
,
M. S.
,
Garmestani
,
H.
, and
Tannenbaum
,
R.
, 2007, “
Properties of Carbon Nanotube-Polymer Composites Aligned in a Magnetic Field
,”
Carbon
,
45
, pp.
2037
2046
.
3.
Garmestani
,
H.
,
Al-Haik
,
M. S.
,
Dahmen
,
K.
,
Tannenbaum
,
R.
,
Li
,
D. S.
,
Sablin
,
S. S.
, and
Hussaini
,
M. Y.
, 2003, “
Epoxy Mediated Alignment of Single Wall Carbon Nanotubes Under High Magnetic Fields
,”
Adv. Mater.
,
15
, pp.
1918
1922
.
4.
Su
,
W.-F. A.
,
Chen
,
K. C.
, and
Tseng
,
S. Y.
, 2000, “
Effects of Chemical Structure Changes on Thermal, Mechanical and Crystalline Properties of Rigid Rod Epoxy Resins
,”
J. Appl. Polym. Sci.
,
78
, pp.
446
451
.
5.
Scherzer
,
T.
, 1998, “
Molecular Orientation in Novolac Cured Epoxy Resins as Studied by Rheo-Optical FTIR Spectroscopy
,”
J. Appl. Polym. Sci.
,
70
, pp.
247
259
.
6.
Muthukumar
,
M.
,
Ober
,
C. K.
, and
Thomas
,
E. L.
, 1997, “
Competing Interactions and Levels of Ordering in Self-Organizing Polymeric Materials
,”
Science
,
277
, pp.
1225
1232
.
7.
Christianen
,
P. C. M.
,
Shklyarevskiy
,
I. O.
,
Boamfa
,
M. I.
, and
Maan
,
J. C.
, 2004, “
Alignment of Molecular Materials in High Magnetic Fields
,”
Physica B-
,
346347
, pp.
255
261
.
8.
Geiger
,
K.
,
Knoll
,
K.
, and
Langela
,
M.
, 2002, “
Microstructure and Rheological Properties of Triblock Copolymers Under Extrusion Conditions
,”
Rheol. Acta
,
41
, pp.
345
355
.
9.
Son
,
Y.
,
Ahn
,
K. H.
, and
Char
,
K.
, 2000, “
Morphology of Injection Molded Modified Poly (Phenylene Oxide)/Polyamide-6 Blends
,”
Polym. Eng. Sci.
,
40
, pp.
1376
1381
.
10.
Kabeel
,
M. A.
, 2001, “
Interferometric Determination of (Skin-Core) Optical and Orientation Structural Parameters of Drawn Polypropylene Fibres
,”
J. Phys.: Condens. Matter
,
13
, pp.
353
364
.
11.
Kudaibergenov
,
S. E.
,
Sigitov
,
V. B.
,
Didukh
,
A. G.
,
Bekturov
,
E. A.
, and
Suleimenov
,
I. E.
, 2000, “
Behavior of Polyelectrolyte Gels Under the Influence of D.C. Electric and Magnetic Fields
,”
Polym. Adv. Technol.
,
11
, pp.
805
809
.
12.
Holstein
,
P.
,
Bender
,
M.
,
Winkler
,
M.
, and
Geschke
,
D.
, 1998, “
Reorientation of a Liquid Crystalline Side-Chain Polymer in Electric and Magnetic Fields Investigated by Solid-State H-Nmr
,”
Polym. Adv. Technol.
,
9
, pp.
659
664
.
13.
Suleimenov
,
I. E.
,
Sigitov
,
V. B.
,
Kudaibergenov
,
S. E.
,
Didukh
,
A. G.
,
Fryasinova
,
T. S.
, and
Bekturov
,
E. A.
, 2001, “
Influence of Combined Magnetic and Electric Fields on the Behavior of Polyelectrolyte Hydrogel
,”
Polym. Int.
,
50
, pp.
194
196
.
14.
Tan
,
C.
,
Sun
,
H.
,
Fung
,
B. M.
, and
Grady
,
B. P.
, 2000, “
Properties of Liquid Crystal Epoxy Thermosets Cured in a Magnetic Field
,”
Macromolecules
,
33
, pp.
6249
6254
.
15.
Shiota
,
A.
, and
Ober
,
C. K.
, 1997, “
Orientation of Liquid Crystalline Epoxides Under AC Electric Fields
,”
Macromolecules
,
30
, pp.
4278
4287
.
16.
Al-Haik
,
M. S.
,
Garmestani
,
H.
,
Li
,
D. S.
,
Hussaini
,
M. Y.
,
Sablin
,
S. S.
,
Tannenbaum
,
R.
, and
Dahmen
,
K. H.
, 2004, “
Mechanical Properties of Magnetically Oriented Epoxy
,”
J. Polym. Sci., Part B: Polym. Phys.
,
42
, pp.
1586
1600
.
17.
Assender
,
H. E.
, and
Windle
,
A. H.
, 1997, “
Domain Structures in Magnetically Oriented Liquid Crystalline Polymers
,”
Polymer
,
38
(
3
), pp.
677
688
.
18.
Benicewicz
,
B. C.
,
Smith
,
M. E.
,
Earls
,
J. D.
,
Ralph
,
D.
,
Priester
,
Jr.
,
Setz
,
S. M.
,
Duran
,
R. S.
, and
Douglas
,
E. P.
, 1998, “
Magnetic Field Orientation of Liquid Crystalline Epoxy Thermosets
,”
Macromolecules
,
31
, pp.
4730
4738
.
19.
Kimura
,
T.
, 2003, “
Study on the Effect of Magnetic Fields on Polymeric Materials and Its Application
,”
Polym. J.
,
35
, pp.
823
843
.
20.
Kossikhina
,
S. A.
,
Kimura
,
T.
,
Ito
,
E.
, and
Kawahara
,
M.
, 1998, “
Thermomechanical Properties of a Magnetically and Mechanically Oriented Liquid Crystalline Copolyester, Xydar
,”
Polym. Eng. Sci.
,
38
, pp.
914
921
.
21.
Yamagishi
,
A.
,
Takeuchi
,
T.
,
Higashi
,
T.
, and
Date
,
M.
, 1989, “
Diamagnetic Orientation of Polymerized Molecules Under High Magnetic Fields
,”
J. Phys. Soc. Jpn.
,
58
, pp.
2280
2283
.
22.
Tehrani
,
M.
, and
Al-Haik
,
M.
, 2009, “
Magnetically Enhanced Mechanical and Creep Properties of a Structural Epoxy
,”
Int. J. Mater. Struct. Integr.
,
3
, pp.
147
160
.
23.
Tehrani
,
M.
,
Al-Haik
,
M.
,
Garmestani
,
H.
, and
Li
,
D.
, 2009, “
Effect of Low Field Magnetic Annealing on the Viscoelastic Behavior of A Structural Epoxy
,”
Proceedings of the ASME Conference
pp.
127
134
.
24.
Tehrani
,
M.
,
Al-Haik
,
M.
,
Li
,
D. S.
, and
Garmestani
,
H.
, 2009, “
Effect of Magnetic Annealing on the Viscoelastic Behavior of Epoxies
,”
Proceedings of the SEM Annual Conference and Exposition on Experimental & Applied Mechanics Inc., Society For Experimental Mechanics Inc
.
25.
Al-Haik
,
M. S.
,
Garmestani
,
H.
, and
Savran
,
A.
, 2004, “
Explicit and Implicit Viscoplastic Models For Polymeric Composite
,”
Int. J. Plast.
,
20
, pp.
1875
1907
.
26.
Tehrani
,
M.
,
Safdari
,
M.
, and
Al-Haik
,
M. S.
, 2010, “
Nanocharacterization of Creep Behavior of Multiwall Carbon Nanotubes/Epoxy Nanocomposite
,”
Int. J. Plast.
,
27
, pp.
887
901
.
27.
Kallend
,
J.
,
Kocks
,
U. F.
,
Rollett
,
A. D.
, and
Wenk
,
H.
, 1991, “
Operational Texture Analysis
,”
Mater. Sci. Eng., A
,
132
, pp.
1
11
.
28.
Li
,
K.
,
Gao
,
X. L.
, and
Roy
,
A. K.
, 2006, “
Micromechanical Modeling of Viscoelastic Properties of Carbon Nanotube Reinforced Polymer Composites
,”
Mech. Adv. Mater. Struct.
,
13
, pp.
317
328
.
29.
Oliver
,
W. C.
, and
Pharr
,
G. M.
, 1992, “
An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments
,”
J. Mater. Res.
,
7
, pp.
1564
1583
.
30.
Fischer-Cripps
,
A. C.
, 2002,
Nanoindentation
,
Springer-Verlag
,
New York
.
31.
Chudoba
,
T.
, and
Richter
,
F.
, 2001, “
Investigation of Creep Behavior Under Load During Indentation Experiments and Its Influence on Hardness and Modulus Results
,”
Surf. Coat. Technol.
,
148
, pp.
191
198
.
32.
Han
,
C.-S.
, and
Nikolov
,
S.
, 2007, “
Indentation Size Effects in Polymers and Related Rotation Gradients
,”
J. Mater. Res.
,
22
, pp.
1662
1672
.
33.
Beake
,
B.
, 2006, “
Modeling Indentation Creep of Polymers: A Phenomenological Approach
,”
J. Phys. D: Appl. Phys.
,
39
, pp.
4478
4485
.
34.
Berthoud
,
P.
,
Sell
,
C. G.
, and
Hiver
,
J. M.
, 1999, “
Elastic-Plastic Indentation Creep of Glassy Poly (Methyl Methacrylate) and Polystyrene: Characterization Using Uniaxial Compression and Indentation Tests
,”
J. Phys. D: Appl. Phys.
,
32
, pp.
2923
2932
.
35.
Gray
,
A.
,
Orecchia
,
D.
, and
Beake
,
B. D.
, 2009, “
Nanoindentation of Advanced Polymers Under Non-Ambient Conditions: Creep Modeling and Tan Delta.
,”
J. Nanosci. Nanotechnol.
,
9
(
7
), pp.
4514
4519
.
36.
Gray
,
A.
, and
Beake
,
B. D.
, 2007, “
Elevated Temperature Nanoindentation and Viscoelastic Behavior of Thin Poly (Ethylene Terephthalate) Films
,”
J. Nanosci. Nanotechnol.
,
7
(
7
), pp.
2530
2533
.
37.
Ting
,
T. C. T.
, 1966, “
The Contact Stresses Between a Rigid Indenter and a Viscoelastic Half-Space
,”
J. Appl. Mech.
,
88
, p.
845
.
38.
Lu
,
H.
,
Wang
,
B.
,
Ma
,
J.
,
Huang
,
G.
, and
Viswanathan
,
H.
, 2003, “
Measurement of Creep Compliance of Solid Polymers by Nanoindentation
,”
Mech. Time-Depend. Mater.
,
7
, pp.
189
207
.
39.
Odegard
,
G. M.
,
Gates
,
T. S.
, and
Herring
,
H. M.
, 2005, “
Characterization of Viscoelastic Properties of Polymeric Materials Through Nanoindentation
,”
Exp. Mech.
,
45
, pp.
130
136
.
40.
Huang
,
G.
,
Wang
,
B.
, and
Lu
,
H.
, 2004, “
Measurements of Viscoelastic Functions of Polymers in the Frequency-Domain Using Nanoindentation
,”
Mech. Time-Depend. Mater.
,
8
, pp.
345
364
.
41.
Vanlandingham
,
M. R.
,
Villarrubia
,
J. S.
,
Guthrie
,
W. F.
, and
Meyers
,
G. F.
, 2001, “
Nanoindentation of Polymers: An Overview
,”
Macromol. Symp.
,
167
(
1
), pp.
15
44
.
42.
Singh
,
S. P.
,
Smith
,
J. F.
, and
Singh
,
R. P.
, 2007, “
Characterization of the Damping Behavior of a Nanoindentation Instrument for Carrying Out Dynamic Experiments
,”
Exp. Mech.
,
48
, pp.
571
583
.
43.
Loubet
,
J. L.
,
Oliver
,
W. C.
, and
Lucas
,
B. N.
, 2000, “
Measurement of the Loss Tangent of Low-Density Polyethylene With a Nanoindentation Technique
,”
J. Mater. Res.
,
15
, pp.
1195
1198
.
44.
White
,
C. C.
,
Vanlandingham
,
M. R.
,
Drzal
,
P. L.
,
Chang
,
N.-K.
, and
Chang
,
S.-H.
, 2005, “
Viscoelastic Characterization of Polymers Using Instrumented Indentation. II. Dynamic Testing
,”
J. Polym. Sci., Part B: Polym. Phys.
,
43
(
14
), pp.
1812
1824
.
45.
Herbert1
,
E. G.
,
Oliver
,
W. C.
, and
Pharr
,
G. M.
, 2008, “
Nanoindentation and the Dynamic Characterization of Viscoelastic Solids
,”
J. Phys. D: Appl. Phys.
,
41
,
074021
.
46.
Singh
,
S. P.
,
Singh
,
R. P.
, and
Smith
,
J. F.
, 2005, “
Displacement Modulation Based Dynamic Nanoindentation for Viscoelastic Material Characterization
,”
Proc. Mater. Res. Soc.
,
841
, pp.
414
146
.
47.
Tang
,
B.
, and
Ngan
,
A. H. W.
, 2003, “
Accurate Measurement of Tip-Sample Contact Size During Nanoindentation of Viscoelastic Materials
,”
J. Mater. Res.
,
18
, pp.
1141
1148
.
48.
Xiea
,
X.-L.
,
Maia
,
Y.-W.
, and
Zhoub
,
X.-P.
, 2005, “
Dispersion and Alignment of Carbon Nanotubes in Polymer Matrix: A Review
,”
Mater. Sci. Eng. R.
,
49
(
4
), pp.
89
112
.
49.
Milhans
,
J.
,
Khaleel
,
M.
,
Sun
,
X.
,
Tehrani
,
M.
,
Al-Haik
,
M.
, and
Garmestani
,
H.
, 2010, “
Creep Properties of Solid Oxide Fuel Cell Glass-Ceramic Seal G18
,”
J. Power Sources
,
195
(
11
), pp.
3631
3635
.
50.
Juliano
,
T. F.
,
Vanlandingham
,
M. R.
,
Tweedie
,
C. A.
, and
Van Vliet
,
K. J.
, 2007, “
Multiscale Creep Compliance of Epoxy Networks at Elevated Temperatures
,”
Exp. Mech.
,
47
(
1
), pp.
99
105
.
51.
Tweedie
,
C. A.
, and
Van Vliet
,
K. J.
, 2006, “
Contact Creep Compliance of Viscoelastic Materials via Nanoindentation
,”
J. Mater. Res.
,
21
(
6
), pp.
1576
1589
.
52.
Vanlandingham
,
M. R.
,
Chang
,
N.-K.
,
Drzal
,
P. L.
,
White
,
C. C.
, and
Chang
,
S.-H.
, 2005, “
Viscoelastic Characterization of Polymers Using Instrumented Indentation. I. Quasi-Static Testing
,”
J. Polym. Sci., Part B: Polym. Phys.
,
43
, pp.
1794
1811
.
You do not currently have access to this content.