Hydroxyapatite (HA) whisker reinforced polyetheretherketone (PEEK) composites have been investigated as bioactive materials for load-bearing orthopedic implants with tailored mechanical properties governed by the volume fraction, morphology, and preferred orientation of the HA whisker reinforcements. Therefore, the objective of this study was to establish key structure-property relationships and predictive capabilities for the design of HA whisker reinforced PEEK composites and, more generally, discontinuous short fiber-reinforced composite materials. HA whisker reinforced PEEK composites exhibited anisotropic elastic constants due to a preferred orientation of the HA whiskers induced during compression molding. Experimental measurements for both the preferred orientation of HA whiskers and composite elastic constants were greatest in the flow direction during molding (3-axis, C33), followed by the transverse (2-axis, C22) and pressing (1-axis, C11) directions. Moreover, experimental measurements for the elastic anisotropy and degree of preferred orientation in the same specimen plane were correlated. A micromechanical model accounted for the preferred orientation of HA whiskers using two-dimensional implementations of the measured orientation distribution function (ODF) and was able to more accurately predict the orthotropic elastic constants compared to common, idealized assumptions of randomly oriented or perfectly aligned reinforcements. Model predictions using the 3-2 plane ODF, and the average of the 3-1 and 3-2 plane ODFs, were in close agreement with the corresponding measured elastic constants, exhibiting less than 5% average absolute error. Model predictions for C11 using the 3-1 plane ODF were less accurate, with greater than 10% error. This study demonstrated the ability to accurately predict differences in orthotropic elastic constants due to changes in the reinforcement orientation distribution, which will aid in the design of HA whisker reinforced PEEK composites and, more generally, discontinuous short fiber-reinforced composites.

References

References
1.
Bobyn
,
J. D.
,
Mortimer
,
E. S.
,
Glassman
,
A. H.
,
Engh
,
C. A.
,
Miller
,
J. E.
, and
Brooks
,
C. E.
, 1992, “
Producing and Avoiding Stress Shielding
,”
Clin. Orthop. Relat. Res.
274
, pp.
79
96
.
2.
Huiskes
,
R.
,
Weinans
,
H.
, and
van Rietbergen
,
B.
, 1992, “
The Relationship Between Stress Shielding and Bone Resorption Around Total Hip Stems and the Effects of Flexible Materials
,”
Clin. Orthop. Relat. Res.
274
, pp.
124
134
.
3.
Vander Sloten
,
J.
,
Labey
,
L.
,
Van Audekercke
,
R.
, and
Van der Perre
,
G.
, 1998, “
Materials Selection and Design for Orthopaedic Implants with Improved Long-term Performance
,”
Biomaterials
,
19
, pp.
1455
1459
.
4.
Latour
, Jr.,
R. A.
, 1995, “
Fiber-Reinforced Biomaterials for Orthopedic Implant Applications
,”
Encyclopedic Handbook of Biomaterials and Bioengineering, Part B: Applications
,
D. L.
Wise
,
D. J.
Trantolo
,
D. E.
Altobelli
,
M. J.
Yaszemski
,
J. D.
Gresser
,
E. R.
Schwartz
, eds.,
CRC Press
,
Boca Raton
, Vol.
1
, pp.
359
382
.
5.
Rose
,
F. R. A. J.
, and
Oreffo
,
R. O. C.
, 2002, “
Bone Tissue Engineering: Hope vs. Hype
,”
Biochem. Biophys. Res. Commun
,
292
, pp.
1
7
.
6.
Abu Bakar
,
M. S.
,
Cheng
,
M. H. W.
,
Tang
,
S. M.
,
Yu
,
S. C.
,
Liao
,
K.
,
Tan
,
C. T.
,
Khor
,
K. A.
, and
Cheang
,
P.
, 2003, “
Tensile Properties, Tension-tension Fatigue and Biological Response of Polyetheretherketone-hydroxyapatite Composites for Load-bearing Orthopedic Implants
,”
Biomaterials
,
24
, pp.
2245
2250
.
7.
Roeder
,
R. K.
, and
Conrad
,
T. L.
, 2011, “
Bioactive Polyaryletherketone Composites
,”
PEEK Biomaterials Handbook
,
S. M.
Kurtz
, ed.,
Elsevier, Inc.
,
Amsterdam
, pp.
163
179
.
8.
Kurtz
,
S. M.
, and
Devine
,
J. N.
, 2007, “
PEEK Biomaterials in Trauma, Orthopedic, and Spinal Implants
,”
Biomaterials
,
28
, pp.
4845
4869
.
9.
Toth
,
J. M.
,
Wang
,
M.
,
Estes
,
B. T.
,
Scifert
,
J. L.
,
Seim
III,
H. B.
, and
Turner
,
A. S.
, 2006, “
Polyetheretherketone as a Biomaterial for Spinal Applications
,”
Biomaterials
,
27
, pp.
324
334
.
10.
Evans
,
S. L.
, and
Gregson
,
P. J.
, 1998, “
Composite Technology in Load-bearing Orthopaedic Implants
,”
Biomaterials
,
19
, pp.
1329
1342
.
11.
Brantigan
,
J. W.
,
McAfee
,
P. C.
,
Cunningham
,
B. W.
,
Wang
,
H.
, and
Orbegoso
,
C. M.
, 1994, “
Interbody Lumbar Fusion Using a Carbon Fiber Cage Implant Versus Allograft Bone
,”
Spine
,
19
, pp.
1436
1444
.
12.
Von Wilmowsky
,
C.
,
Lutz
,
R.
,
Meisel
,
U.
,
Srour
,
S.
,
Rupprecht
,
S.
,
Toyoshima
,
T.
,
Nkenke
,
E.
,
Shlegel
,
K. A.
,
Pohle
,
D.
,
Münstedt
,
H.
,
Rechtenwald
,
T.
, and
Schmidt
,
M.
, 2009, “
in vivo Evaluation of β-TCP Containing 3D Laser Sintered Poly(ether ether ketone) Composites in Pigs
,”
J. Bioact. Compat. Pol.
,
24
, pp.
169
184
.
13.
Converse
,
G. L.
,
Yue
,
W.
, and
Roeder
,
R. K.
, 2007, “
Processing and Tensile Properties of Hydroxyapatite-whisker-reinforced Polyetheretherketone
,”
Biomaterials
,
28
, pp.
927
935
.
14.
Converse
,
G. L.
,
Conrad
,
T. L.
, and
Roeder
,
R. K.
, 2009, “
Mechanical Properties of Hydroxyapatite Whisker Reinforced Polyetherketoneketone Composite Scaffolds
,”
J. Mech. Behav. Biomed. Mater.
,
2
, pp.
627
635
.
15.
Roeder
,
R. K.
,
Smith
,
S. M.
,
Conrad
,
T. L.
,
Yanchak
,
N. J.
,
Merrill
,
C. H.
, and
Converse
,
G. L.
, 2009, “
Porous and Bioactive PEEK Implants for Interbody Spinal Fusion
,”
Adv. Mater. Process.
,
167
, pp.
46
48
.
16.
Yue
,
W.
, and
Roeder
,
R. K.
, 2006, “
Micromechanical Model for Hydroxyapatite Whisker Reinforced Polymer Biocomposites
,”
J. Mater. Res.
,
21
, pp.
2136
2145
.
17.
Wenk
,
H.-R.
, and
Houtte
,
P. V.
, 2004, “
Texture and Anisotropy
,”
Rep. Prog. Phys.
,
67
, pp.
1367
1428
.
18.
Aizawa
,
M.
,
Porter
,
A. E.
,
Best
,
S. M.
, and
Bonfield
,
W.
, 2005, “
Ultrastructural Observation of Single-Crystal Apatite Fibers
,”
Biomaterials
,
26
, pp.
3427
3433
.
19.
Yoshimura
,
M.
,
Suda
,
H.
,
Okamoto
,
K.
, and
Ioku
,
K.
, 1994, “
Hydrothermal Synthesis of Biocompatible Whiskers
,”
J. Mater. Sci.
,
29
, pp.
3399
3402
.
20.
Moradian-Oldak
,
J.
,
Weiner
,
S.
,
Addadi
,
L.
,
Landis
,
W. J.
, and
Traub
,
W.
, 1991, “
Electron Imaging and Diffraction Study of Individual Crystals of Bone, Mineralized Tendon and Synthetic Carbonated Apatite
,”
Connect. Tissue Res.
,
25
, pp.
219
228
.
21.
Deuerling
,
J. M.
,
Yue
,
W.
,
Espinoza Orías
,
A. A.
, and
Roeder
,
R. K.
, 2009, “
Specimen-specific Multiscale Model for the Anisotropic Elastic Constants of Human Cortical Bone
,”
J. Biomechanics
,
42
, pp.
2061
2067
.
22.
Roeder
,
R. K.
,
Converse
,
G. L.
,
Leng
,
H.
, and
Yue
,
W.
, 2006, “
Kinetic Effects on Hydroxyapatite Whiskers Synthesized by the Chelate Decomposition Method
,”
J. Am. Ceram. Soc.
,
89
, pp.
2096
2104
.
23.
Roeder
,
R. K.
,
Sproul
,
M. S.
, and
Turner
,
C. H.
, 2003, “
Hydroxyapatite Whiskers Provide Improved Mechanical Properties in Reinforced Polymer Composites
,”
J. Biomed. Mater. Res.
,
67A
, pp.
801
812
.
24.
ASTM Standard C373-88
, 1999, “
Standard Test Method for Water Absorption, Bulk Density, Apparent Density and the Apparent Specific Gravity of Fired Whiteware Products
,” American Society for Testing Materials, West Conshohocken, PA.
25.
Halpin
,
J. C.
, 1992,
Primer on Composite Materials Analysis
,
Technomic Publishing Co.
,
Lancaster, PA
.
26.
Katz
,
J. L.
, and
Ukraincik
,
K.
, 1971, “
On the Anisotropic Elastic Properties of Hydroxyapatite
,”
J. Biomechanics
,
4
, pp.
221
227
.
27.
Folkes
,
M. J.
, and
Russell
,
D. A. M.
, 1980, “
Orientation Effects During the Flow of Short-fibre Reinforced Thermoplastics
,”
Polymer
,
21
, pp.
1252
1258
.
28.
Toll
,
S.
, and
Andersson
,
P.-O.
, 1991, “
Microstructural Characterization of Injection Moulded Composites Using Image Analysis
,”
Composites
,
22
, pp.
298
306
.
29.
Bay
,
R. S.
, and
Tucker
, III,
C. L.
, 1992, “
Fiber Orientation in Simple Injection Moldings. Part II: Experimental Results
,”
Polym. Compos.
,
13
, pp.
332
341
.
30.
Bay
,
R. S.
, and
Tucker
III,
C. L.
, 1992, “
Stereological Measurement and Error Estimates for Three-Dimensional Fiber Orientation
,”
Polym. Eng. Sci.
,
32
, pp.
240
253
.
31.
Espinoza Orías
,
A. A.
,
Deuerling
,
J. M.
,
Landrigan
,
M. D.
,
Renaud
,
J. E.
, and
Roeder
,
R. K.
, 2009, “
Anatomic Variation in the Elastic Anisotropy of Cortical Bone Tissue in the Human Femur
,”
J. Mech. Behav. Biomed. Mater.
,
2
, pp.
255
263
.
32.
Rudy
,
D. J.
,
Deuerling
,
J. M.
,
Espinoza Orías
,
A. A.
, and
Roeder
,
R. K.
, 2011, “
Anatomic Variation in the Elastic Inhomogeneity and Anisotropy of Human Femoral Cortical Bone Tissue is Consistent Across Multiple Donors
,”
J. Biomechanics
,
44
, pp.
1817
1820
.
33.
Cullity
,
B. D.
, 1978,
Elements of X-ray Diffraction
,
2nd ed.
,
Addison Wesley Publishing Co.
,
Reading, MA
.
34.
Camacho
,
C. W.
,
Tucker
, III,
C. L.
,
Yalvaç
,
S.
, and
McGee
,
R. L.
, 1990, “
Stiffness and Thermal Expansion Predictions for Hybrid Short Fiber Composites
,”
Polym. Compos.
,
11
, pp.
229
239
.
35.
Hine
,
P. J.
,
Duckett
,
R. A.
, and
Ward
,
I. M.
, 1993, “
Modelling the Elastic Properties of Fibre-Reinforced Composites: II Theoretical Predictions
,”
Compos. Sci. Technol.
,
49
, pp.
13
21
.
36.
Gusev
,
A.
,
Heggli
,
M.
,
Lusti
,
H. R.
, and
Hine
,
P. J.
, 2002, “
Orientation Averaging for Stiffness and Thermal Expansion of Short Fiber Composites
,”
Adv. Eng. Mater.
,
4
, pp.
931
933
.
You do not currently have access to this content.