This work aims to investigate the dynamic behavior of polypropylene organoclay nanocomposites. The nanocomposite was obtained by mixing the polypropylene matrix with a masterbatch of polypropylene modified anhydride maleic and montmorillonite organoclay (pp-nanocor). The dynamic behavior was investigated by using split Hopkinson pressure bars, at different strain rates and different temperatures. The obtained nanocomposite exhibits a good dispersion and a partially exfoliated morphology. To study the effect of nanocomposite dispersion and morphology on the dynamic behavior, another nanocomposite was prepared by melt mixing of polypropylene and a modified montmorillonite (dellite) (PP dellite). The dynamic property results for PP-nanocor show an increase of both Young’s modulus and yield stress with the increasing organoclay concentration. However, PP-dellite nanocomposites present poor mechanical properties compared with those of PP-nanocor.

References

References
1.
Ginzburg
,
V. V.
,
Singh
,
C.
, and
Balazs
,
A. C.
, 2000, “
Theoretical Phase Diagrams of Polymer/Clay Composites: The Role of Grafted Organic Modifiers
,”
Macromolecules
,
33
(
3
), pp.
1089
1099
.
2.
Giannelis
,
E. P.
, 1996, “
Polymer Layered Silicate Nanocomposites
,”
Adv. Mater.
,
8
(
1
), pp.
29
35
.
3.
Chen
,
G.
,
Qi
,
Z.
, and
Shen
,
D.
, 2000, “
Shear-induced Ordered Structure in Polystyrene/Clay Nanocomposite
,”
J. Mater. Res.
,
15
(
2
), pp.
351
356
.
4.
Ma
,
J.
,
Qi
,
Z.
, and
Hu
,
Y.
, 2001, “
Synthesis and Characterization of Polypropylene/Clay Nanocomposites
,”
J. Appl. Polym. Sci.
,
82
(
14
), pp.
3611
3617
.
5.
Lan
,
T.
, and
Pinnavaia
,
T. J.
, 1994, “
Clay-Reinforced Epoxy Nanocomposites
,”
Chem. Mater.
,
6
(
12
), pp.
2216
2219
.
6.
Matadi
,
R.
,
Makradi
,
A.
,
Ahzi
,
S.
,
Sieffert
,
J.
,
Etienne
,
S.
,
Rush
,
D.
,
Vaudemont
,
R.
,
Muller
,
R.
, and
Bouquey
,
M.
, 2009, “
Preparation, Structural Characterization, and Thermomechanical Properties of Poly(methyl methacrylate)/Organoclay Nanocomposites by Melt Intercalation
,”
J. Nanosci. Nanotechnol.
,
9
, pp.
2923
2930
.
7.
Matadi
,
R.
,
Gueguen
,
O.
,
Ahzi
,
S.
,
Gracio
,
J.
,
Muller
,
R.
, and
Ruch
,
D.
, 2010, “
Investigation of the Stiffness and Yield Behaviour of Melt-Intercalated Poly (methyl methacrylate)/Organoclay Nanocomposites: Characterisation and Modelling
,”
J. Nanosci. Nanotechnol.
,
10
, pp.
2956
2961
.
8.
Matadi Boumbimba
,
R.
,
Said
,
A.
,
Nadia
,
B.
,
David
,
R.
, and
José
,
G.
, 2011, “
Dynamic Mechanical Properties of PMMA/Organoclay Nanocomposite: Experiments and Modeling
,”
ASME J. Eng. Mater. Technol.
,
133
(
3
),
030908
.
9.
Vaia
,
R. A.
,
Ishii
,
H.
, and
Giannelis
,
E. P.
, 1993, “
Synthesis and Properties of Two-Dimensional Nanostructures by Direct Intercalation of Polymer Melts in Layered Silicates
,”
Chem. Mater.
,
5
(
12
), pp.
1694
1696
.
10.
Jourdainne
,
L.
,
Matadi Boumbimba
,
R.
,
Triki
,
B.
,
Bouquey
,
M.
,
Muller
,
R.
,
Hébraud
P.
, and
Pfeiffer
P.
, 2010, “
Compact and Flexible Optical Sensor Designed for On-Line Monitoring
,”
Int. J. Mater. Form.
, in press, pp.
1
9
.
11.
Giannelis
,
E.
,
Krishnamoorti
,
R.
, and
Manias
,
E.
, 1999, “
Polymer-Silicate Nanocomposites: Model Systems for Confined Polymers and Polymer Brushes
,”
Polymers in Confined Environments
,
S.
Granick
,
K.
Binder
,
P. G.
de Gennes
,
E.
Giannelis
,
G.
Grest
,
H.
Hervet
,
R.
Krishnamoorti
,
L.
Léger
,
E.
Manias
,
E.
Raphaël
, and
S. Q.
Wang
, eds.,
Springer
,
Berlin/Heidelberg
, pp.
107
147
.
12.
Lagaly
,
G.
, 1999, “
Introduction: From clay Mineral-Polymer Interactions to Clay Mineral-Polymer Nanocomposites
,”
Appl. Clay Sci.
,
15
(
1-2
), pp.
1
9
.
13.
Zilg
,
C.
,
Reichert
,
P.
,
Dietsche
,
F.
,
Engelhardt
,
T.
, and
Muelhaupt
,
R.
, 1998, “
Plastics and rubber Nanocomposites Based Upon Layered Silicates
,”
Kunstst. Plast Europe
,
88
, pp.
65
67
.
14.
Usuki
,
A.
,
Kojima
,
Y.
,
Kawasumi
,
M.
,
Okada
,
A.
,
Fukushima
,
Y.
,
Kurauchi
,
T.
, and
Kamigaito
,
O.
, 1993, “
Synthesis of Nylon 6-Clay Hybrid
,”
J. Mater. Res.
,
8
(
5
), pp.
1179
1184
.
15.
Pessey
,
D.
,
Bahlouli
,
N.
,
Pattofatto
,
S.
, and
Ahzi
,
S.
, 2008, “
Polymer Composites for the Automotive Industry: Characterisation of the Recycling Effect on the Strain Rate Sensitivity
,”
Int. J. Crashworthiness
,
13
(
4
), pp.
411
424
.
16.
Song
,
B.
,
Chen
,
W.
,
Liu
,
Z.
, and
Erhan
,
S.
, 2006, “
Compressive Properties of Epoxidized Soybean Oil/Clay Nanocomposites
,”
Int. J. Plast.
,
22
(
8
), pp.
1549
1568
.
17.
Bureau
,
M. N.
,
Perrin-Sarazin
,
F.
, and
Ton-That
,
M. T.
, 2004, “
Polyolefin Nanocomposites: Essential Work of Fracture Analysis
,”
Polym. Eng. Sci.
,
44
(
6
), pp.
1142
1151
.
18.
Bahlouli
,
N.
,
Pessey
,
D.
,
Ahzi
,
S.
, and
Rémond
,
Y.
, 2006, “
Mechanical Behavior of Composite Based Polypropylene: Recycling and Strain Rate Effects
,”
J. Phys. IV France
,
134
, pp.
1319
1323
.
19.
Pessey
,
D.
,
Bahlouli
,
N.
,
Ahzi
,
S.
, and
Khaleel
,
M.
, 2008, “
Strain Rate Effects on the Mechanical Response of Polypropylene-Based Composites Deformed at Small Strains
,”
Polym. Sci. Ser. A
,
50
, pp.
690
697
.
20.
Hablot
,
E.
,
Matadi
,
R.
,
Ahzi
,
S.
, and
Avérous
L.
, 2010, “
Renewable Biocomposites of Dimer Fatty Acid-Based Polyamides With Cellulose Fibres: Thermal, Physical and Mechanical Properties
,”
Compos. Sci. Technol.
,
70
(
3
), pp.
504
509
.
21.
Mark
,
J.
, 2006,
Physical Properties of Polymers Handbook
,
Springer
,
New York.
.
22.
Malinowski
,
J. Z.
, and
Klepaczko
,
J. R.
, 1986, “
A Unified Analytic and Numerical Approach to Specimen Behaviour in the Split-Hopkinson Pressure Bar
,”
Int. J. Mech. Sci.
,
28
(
6
), pp.
381
391
.
23.
Bao
,
S. P.
, and
Tjong
,
S. C.
, 2008, “
Mechanical Behaviors of Polypropylene/Carbon Nanotube Nanocomposites: The Effects of Loading Rate and Temperature
,”
Mater. Sci. and Eng., A
,
485
(
1-2
), pp.
508
516
.
24.
Guo
,
Y. Z.
, and
Li
,
Y. L.
, 2007, “
Quasi-Static/Dynamic Response of SiO2-Epoxy Nanocomposites
,”
Mater. Sci. Eng., A
,
458
(
1-2
), pp.
330
335
.
25.
Matadi
,
R.
,
Hablot
,
E.
,
Wang
,
K.
,
Bahlouli
,
N.
,
Ahzi
,
S.
, and
Avérous
L.
, 2011, “
High Strain Rate Behaviour of Renewable Biocomposites Based on Dimer Fatty Acid Polyamides and Cellulose Fibres
,”
Compos. Sci. Technol.
,
71
(
5
), pp.
674
682
.
26.
Richeton
,
J.
,
Ahzi
,
S.
,
Vecchio
,
K. S.
,
Jiang
,
F. C.
, and
Makradi
,
A.
, 2007, “
Modeling and Validation of the Large Deformation Inelastic Response of Amorphous Polymers Over a Wide Range of Temperatures and Strain Rates
,”
Int. J. Solids Struct.
,
44
(
24
), pp.
7938
7954
.
27.
Richeton
,
J.
,
Ahzi
,
S.
,
Vecchio
,
K. S.
,
Jiang
,
F. C.
, and
Adharapurapu
,
R. R.
, 2006, “
Influence of Temperature and Strain Rate on the Mechanical Behavior of Three Amorphous Polymers: Characterization and Modeling of the Compressive Yield Stress
,”
Int. J. Solids Struct.
,
43
(
7-8
), pp.
2318
2335
.
28.
Wang
,
Y.
, and
Arruda
,
E. M.
, 2006, “
Constitutive Modeling of a Thermoplastic Olefin Over a Broad Range of Strain Rates
,”
ASME J. Eng. Mater. Technol.
,
128
(
4
), pp.
551
558
.
29.
Ahzi
,
S.
,
Ganesan
,
A.
, and
Arruda
,
E.
, 2002, “
Modeling and Simulation of Deformation Texture in Semi-Crystalline Polymers: Application to Polypropylene and Nylon-6
,”
Mater. Sci. Forum
,
408-412
, pp.
1723
1728
.
30.
Garg
,
M.
,
Mulliken
,
A. D.
, and
Boyce
,
M. C.
, 2008, “
Temperature Rise in Polymeric Materials During High Rate Deformation
,”
ASME J. Appl. Mech.
,
75
(
1
),
011009
.
31.
Rittel
,
D.
, 1999, “
On the Conversion of Plastic Work to Heat During High Strain Rate Deformation of Glassy Polymers
,”
Mech. Mater.
,
31
(
2
), pp.
131
139
.
32.
Lankford
,
J.
, 1993, “
Micromechanisms of Compressive Failure in A glass Fibre-Reinforced Amorphous Thermoplastic
,”
J. Mater. Sci.
,
28
(
11
), pp.
3027
3034
.
33.
Truss
,
R. W.
,
Clarke
,
P. L.
,
Duckett
,
R. A.
, and
Ward
,
I. M.
, 1984, “
The Dependence of Yield Behavior on Temperature, Pressure, and Strain Rate for Linear Polyethylenes of Different Molecular Weight and Morphology
,”
J. Polym. Sci., Polym. Phys. Ed.
,
22
(
2
), pp.
191
209
.
34.
Richeton
,
J.
,
Ahzi
,
S.
,
Daridon
,
L.
, and
Remond
,
Y.
, 2005, “
A Formulation of the Cooperative Model for the Yield Stress of Amorphous Polymers for a Wide Range of Strain Rates and Temperatures
,”
Polymer
,
46
(
16
), pp.
6035
6043
.
35.
Hablot
,
E.
,
Matadi
,
R.
,
Ahzi
,
S.
,
Vaudemond
,
R.
,
Ruch
,
D.
, and
Avérous
L.
, 2010, “
Yield Behaviour of Renewable Biocomposites of Dimer Fatty Acid-Based Polyamides With Cellulose Fibres
,”
Compos. Sci. Technol.
,
70
(
3
), pp.
525
529
.
You do not currently have access to this content.