Organic and inorganic fiber reinforced composites with various fiber orientation distributions and fiber geometries are abundantly available in several natural and synthetic structures. Inorganic glass fiber composites have been introduced to numerous applications due to their economical fabrication and tailored structural properties. Numerical characterization of such composite materials is necessitated due to their intrinsic statistical nature, since elaborate experiments are prohibitively costly and time consuming. In this work, representative volume elements of unidirectional random filaments and fibers are numerically developed in PYTHON to enhance accuracy and efficiency of complex geometric representations encountered in random fiber networks. A modified random sequential adsorption algorithm is applied to increase the volume fraction of the representative volume elements, and a spatial segment shortest distance algorithm is introduced to construct a 3D random fiber composite with high fiber aspect ratio (100:1) and high volume fraction (31.8%). For the unidirectional fiber networks, volume fractions as high as 70% are achieved when an assortment of circular fiber diameters are used in the representative volume element.

References

1.
Harris
,
C. E.
,
Starnes
,
J. H.
, and
Shuart
,
M. J.
, 2002, “
Design and Manufacturing of Aerospace Composite Structures, State-of-the-Art Assessment
,”
J. Aircr.
,
39
, pp.
545
560
.
2.
Soutis
,
C.
, 2005, “
Carbon Fiber Reinforced Plastics in Aircraft Applications
,”
Mater. Sci. Eng., A
,
412
(
1–2
), pp.
171
176
.
3.
Riegner
,
D. A.
, 1983, “
Composites in the Automotive Industry
,” ASTM Standardization News.
4.
Beardmore
,
P.
, 1986, “
Composite Structures for Automobiles
,”
Compos. Struct.
,
5
, pp.
163
176
.
5.
Daniel
,
I. M.
, and
Ishai
,
O.
, 1994,
Engineering Mechanics of Composite Materials
,
Oxford University Press
,
New York, NY
.
6.
Mackerle
,
J.
, 2004, “
Finite Element Analyses and Simulations of Manufacturing Processes of Composites and Their Mechanical Properties, a Bibliography (1985–2003)
,”
Comput. Mater. Sci.
,
31
(
3–4
), pp.
187
219
.
7.
Brady
,
G.
,
Clauser
,
H.
, and
Vaccari
,
J.
, 1997,
Materials Handbook
, 15th ed.,
McGraw-Hill
,
New York, NY
.
8.
Cendre
,
E.
,
Feih
,
S.
, and
Stampanoni
,
M.
, 2003, “
Characterization of Glass-Giber Polymer Composites Using X-ray Synchrotron Micro-Tomography
,” Report No. 101:1477-86, Materials Research Department of the Risø National Laboratory, Denmark.
9.
Mallick
,
P. K.
, 2007,
Fiber-Reinforced Composites: Materials, Manufacturing, and Design
, 3rd ed.,
CRC
,
New York, NY
.
10.
Fang
,
Y.
, 2006, “
Influence of Glass Fiber Diameter on the Strength of Fiber and Composite
,”
J. Fiber Glass
,
06
, pp.
01
07
.
11.
Caizzo
,
A. A.
, and
Constanzo
,
F.
, 2000, “
On the Constitutive Relations of Materials With Evolving Microstructure due to Microcracking
,”
Int. J. Solids Struct.
,
37
(
24
), pp.
3375
3398
.
12.
Widom
,
B.
, 1966, “
Random Sequential Addition of Hard Sphere to a Volume
,”
J. Chem. Phys.
,
44
(
10
), pp.
3888
3894
.
13.
Feder
,
J.
, 1980, “
Random Sequential Adsorption
,”
J. Theor. Biol.
,
87
(
2
), pp.
237
254
.
14.
Williams
,
S. R.
, and
Philipse
,
A. P.
, 2003, “
Random Packings of Spheres and Spherocylinders Simulated by Mechanical Contraction
,”
Phys. Rev. E
,
67
(
5
), p.
051301
.
15.
Hinrichsen
,
E.
,
Feder
,
J.
, and
Joessang
,
T.
, 1990, “
Random Packing of Disks in Two Dimensions
,”
Phys. Rev. A
,
41
, pp.
4199
4209
.
16.
Gusev
,
A. A.
, 1997, “
Representative Volume Element Size for Elastic Composites: A Numerical Study
,”
J. Mech. Phys. Solids
,
45
, pp.
1449
1459
.
17.
Gusev
,
A. A.
,
Heggli
,
M.
,
Lusti
,
H. R.
, and
Hine
,
P. J.
, 2002, “
Orientation Averaging for Stiffness and Thermal Expansion of Short Fiber Composites
,”
Adv. Eng. Mater.
,
4
(
12
), pp.
927
931
.
18.
Gusev
,
A. A.
,
Hine
,
P. J.
, and
Ward
,
I. M.
, 2000, “
Fiber Packing and Elastic Properties of a Transversely Random Unidirectional Glass/Epoxy Composite
,”
Compos. Sci. Technol.
,
60
(
4
), pp.
535
541
.
19.
Wang
,
Z.
,
Wang
,
X.
,
Zhang
,
J.
,
Liang
,
W.
, and
Zhou
,
L.
, 2011, “
Automatic Generation of Random Distribution of Fibers in Long-fiber-Reinforced Composites and Mesomechanical Simulation
,”
Mater. Des.
,
32
(
2
), pp.
885
891
.
20.
Boehm
,
H. J.
,
Eckschlager
,
A.
, and
Han
,
W.
, 2002, “
Multi-Inclusion Unit Cell Models for Metal Matrix Composites With Randomly Oriented Discontinuous Reinforcements
,”
Comput. Mater. Sci.
,
25
(
1–2
), pp.
42
53
.
21.
Tu
,
S. T.
,
Cai
,
W. Z.
,
Yin
,
Y.
, and
Ling
,
X.
, 2005, “
Numerical Simulation of Saturation Behavior of Physical Properties in Composites With Randomly Distributed Second-Phase
,”
J. Compos. Mater.
,
39
(
7
), pp.
617
631
.
22.
Coelho
,
D.
,
Thovert
,
J. F.
, and
Adler
,
P. M.
, 1997, “
Geometrical and Transport Properties of Random Packings of Spheres and Aspherical Particles
,”
Phys. Rev. E
,
55
(
2
), pp.
1959
1978
.
23.
Kari
,
S.
,
Berger
,
H.
, and
Gabbert
,
U.
, 2007, “
Numerical Evaluation of Effective Material Properties of Randomly Distributed Short Cylindrical Fibre Composites
,”
Comput. Mater. Sci.
,
39
(
1
), pp.
198
204
.
24.
Iorga
,
L.
,
Pan
,
Y.
, and
Pelegri
,
A. A.
, 2008, “
Numerical Characterization of Material Elastic Properties for Random Fiber Composites
,”
J. Mech. Mater. Struct.
,
3
(
7
), pp.
1279
1298
.
25.
Pan
,
Y.
,
Iorga
,
L.
, and
Pelegri
,
A. A.
, 2007, “
Analysis of 3D Random Chopped Fiber Reinforced Composites Using FEM and Random Sequential Adsorption
,”
Comput. Mater. Sci.
,
43
(
3
), pp.
450
461
.
26.
Redenbach
,
C.
, and
Vecchio
,
I.
, 2011, “
Statistical Analysis and Stochastic Modeling of Fibre Composites
,”
Compos. Sci. Technol.
,
71
(
2
), pp.
107
112
.
27.
Faessel
,
M.
,
Delisée
,
C.
,
Bos
,
F.
, and
Castéra
,
P.
, 2005, “
3D Modeling of Random Cellulosic Fibrous Networks Based on X-Ray Tomography and Image Analysis
,”
Compos. Sci. Technol.
,
65
(
13
), pp.
1931
1940
.
28.
Evans
,
K. E.
, and
Gibson
,
A. G.
, 1986, “
Prediction of the Maximum Packing Fraction Achievable in Randomly Orientated Short-Fibre Composites
,”
Compos. Sci. Technol.
,
25
(
2
), pp.
149
162
.
29.
Parkhouse
,
J. G.
, and
Kelly
,
A.
, 1995, “
The Random Packing of Fibers in Three Dimensions
,”
Proc. R. Soc. London, Ser. A
,
451
(
1943
), pp.
737
746
.
30.
Toll
,
S.
, 1998, “
Packing Mechanics of Fiber Reinforcements
,”
Polym. Eng. Sci.
,
38
(
8
), pp.
1337
1350
.
31.
Jones
,
B. F.
, 1971, “
Further Observations Concerning the Effect of Diameter on the Fracture Strength and Young’s Modulus of Carbon and Graphite Fibres Made From Polyacrylonitrile
,”
J. Mater. Sci.
,
6
(
9
), pp.
1225
1227
.
32.
Ramsteiner
,
F.
, and
Theysohn
,
R.
, 1985, “
The Influence of Fibre Diameter on the Tensile Behavior of Short-Glass-Fibre Reinforced Polymers
,”
Compos. Sci. Technol.
,
24
(
3
), pp.
231
240
.
33.
Miwa
,
M.
, and
Horiba
,
N.
, “
Effects of Fibre Length on Tensile Strength of Carbon/Glass Fibre Hybrid Composites
,”
J. Mater. Sci.
,
29
(
4
), pp.
973
977
.
34.
Zhao
,
Y. H
, and
Weng
,
G. J.
, 1990, “
Effective Elastic Moduli of Ribbon-Reinforced Composites
,”
ASME J. Appl. Mech.
,
57
(
1
), pp.
158
167
You do not currently have access to this content.