The functioning and performance of today’s integrated circuits and sensors are highly affected by the thermal properties of microscale silicon structures. Due to the well known size effect, the thermal properties of microscale silicon structures are not the same as those of the bulk silicon. Furthermore, stress/strain inside microscale silicon structures can significantly affect their thermal properties. This article presents the first thermal conductivity measurements of a microscale silicon structure under applied compressive stress at 350 K. Atomic force microscope (AFM) cantilevers made of doped single-crystal silicon were used as samples. A resistance temperature detector (RTD) heater attached to another RTD sensor was used as the heating module, which was mounted onto a nanoindentation test platform. This integrated system applied compressive load to the cantilever in the longitudinal direction while supplying heat. The thermal conductivity of the cantilevers was calculated using steady state heat conduction equation. The result shows that the measured thermal conductivity varies from 110W/(m·K) to 140W/(m·K) as compressive strain varies from 0.1% to 0.3%. Thermal conductivity is shown to increase with increase in compressive strain. These results match with the published simulation values. The measured thermal conductivity and stress values vary in the similar manner as a function of applied strain.

References

References
1.
Blackburn
,
D. L.
, 2004, “
Temperature measurements of semiconductor devices—A Review
,” in
Semiconductor Thermal Measurement and Management Symposium
, 20th Annual IEEE.
2.
International Technology Roadmap for Semiconductors, 2010.
3.
Goodson
,
K. E.
,
Flik
,
M. I.
,
Su
,
L. T.
, and
Antoniadis
,
D. A.
, 1995, “
Prediction and Measurement of Temperature-Fields in Silicon-on-Insulator Electronic-Circuits
,”
ASME Trans. J. Heat Transfer
,
117
(
3
), pp.
574
581
.
4.
Glassbrenner
,
C. J.
, and
Slack
,
G. A.
, 1964, “
Thermal Conductivity of Silicon + Germanium From 3 Degrees K to Melting Point
,”
Phys. Rev. A—Gen. Phys.
,
134
(
4A
), pp.
1058
1069
.
5.
Touloukian
,
Y. S.
,
Powell
,
R. W.
,
Ho
,
C. Y.
, and
Klemens
,
P. G.
, 1970, “
Thermal Conductivity-Metallic Elements and Alloys
,”
The TPRC Data Series
,
Springer
,
NewYork
.
6.
Thompson
,
J. C.
, and
Younglove
,
B. A.
, 1961, “
Thermal Conductivity of Silicon at Low Temperatures
,”
J. Phys. Chem. Solids
,
20
(
1–2
), pp.
146
149
.
7.
Asheghi
,
M.
,
Touzelbaev
,
M. N.
,
Goodson
,
K. E.
,
Leung
,
Y. K.
, and
Wong
,
S. S.
, 1998, “
Temperature-Dependent Thermal Conductivity of Single-Crystal Silicon Layers in SOI Substrates
,”
ASME Trans. J. Heat Transfer
,
120
(
1
), pp.
30
36
.
8.
Ju
,
Y. S.
, and
Goodson
,
K. E.
, 1999, “
Phonon Scattering in Silicon Films With Thickness of Order 100 nm
,”
Appl. Phys. Lett.
,
74
(
20
), pp.
3005
3007
.
9.
McConnell
,
A. D.
, and
Goodson
,
K. E.
, 2005, “
Thermal Conduction in Silicon Micro- and Nanostructures
,”
Annu. Rev. Heat Transfer
,
14
, pp.
129
168
.
10.
McConnell
,
A. D.
,
Uma
,
S.
, and
Goodson
,
K. E.
, 2001, “
Thermal Conductivity of Doped Polysilicon Layers
,”
J. Microelectromech. Syst.
,
10
(
3
), pp.
360
369
.
11.
Uma
,
S.
,
McConnell
,
A. D.
,
Asheghi
,
M.
,
Kurabayashi
,
K.
, and
Goodson
,
K. E.
, 2001, “
Temperature-Dependent Thermal Conductivity of Undoped Polycrystalline Silicon Layers
,”
Int. J. Thermophys.
,
22
(
2
), pp.
605
616
.
12.
Cahill
,
D. G.
,
Goodson
,
K.
, and
Majumdar
,
A.
, 2002, “
Thermometry and Thermal Transport in Micro/Nanoscale Solid-State Devices and Structures
,”
ASME Trans. J. Heat Transfer
,
124
(
2
), pp.
223
241
.
13.
Xu
,
Y.
, and
Li
,
G.
, 2009, “
Strain Effect Analysis on Phonon Thermal Conductivity of Two-Dimensional Nanocomposites
,”
J. Appl. Phys.
,
106
(
11
), p.
13
.
14.
Jacoboni
,
C.
, and
Lugli
,
P.
, 1989,
The Monte Carlo Method for Semiconductor Device Simulation
,
Springer-Verlag
,
New York
.
15.
Randrianalisoa
,
J.
, and
Baillis
,
D.
, 2008, “
Monte Carlo Simulation of Steady-State Microscale Phonon Heat Transport
,”
ASME Trans. J. Heat Transfer
,
130
(
7
), p.
052402
.
16.
Mazumder
,
S.
, and
Majumdar
,
A.
, 2001, “
Monte Carlo Study of Phonon Transport in Solid Thin Films Including Dispersion and Polarization
,”
ASME Trans. J. Heat Transfer
,
123
(
4
), pp.
749
759
.
17.
Lu
,
X.
,
Shen
,
W. Z.
, and
Chu
,
J. H.
, 2002, “
Size Effect on the Thermal Conductivity of Nanowires
,”
J. Appl. Phys.
,
91
(
3
), pp.
1542
1552
.
18.
Lu
,
X.
, and
Chu
,
J. H.
, 2002, “
Phonon Heat Transport in Silicon Nanowires
,”
Eur. Phys. J. B
,
26
(
3
), pp.
375
378
.
19.
Mountain
,
R. D.
, and
Macdonald
,
R. A.
, 1983, “
Thermal-Conductivity of Crystals—A Molecular-Dynamics Study of Heat-Flow in a Two-Dimensional Crystal
,”
Phys. Rev. B
,
28
(
6
), pp.
3022
3025
.
20.
Feng
,
X. L.
,
Li
,
Z. X.
, and
Guo
,
Z. Y.
, 2001, “
Size Effect of Lattice Thermal Conductivity Across Nanoscale Thin Films by Molecular Dynamics Simulations
,”
Chin. Phys. Lett.
,
18
(
3
), pp.
416
418
.
21.
Feng
,
X. L.
,
Li
,
Z. X.
,
Liang
,
X. G.
, and
Guo
,
Z. Y.
, 2001, “
Molecular Dynamics Study on Thermal Conductivity of Nanoscale Thin Films
,”
Chin. Sci. Bull.
,
46
(
7
), pp.
604
607
.
22.
Lukes
,
J. R.
,
Li
,
D. Y.
,
Liang
,
X. G.
, and
Tien
,
C. L.
, 2000, “
Molecular Dynamics Study of Solid Thin-Film Thermal Conductivity
,”
ASME Trans. J. Heat Transfer
,
122
(
3
), pp.
536
543
.
23.
Li
,
X. B.
,
Maute
,
K.
,
Dunn
,
M. L.
, and
Yang
,
R. G.
, 2010, “
Strain Effects on the Thermal Conductivity of Nanostructures
,”
Phys. Rev. B
,
81
(
24
), p.
245318
.
24.
Asheghi
,
M.
,
Kurabayashi
,
K.
,
Kasnavi
,
R.
, and
Goodson
,
K. E.
, 2002, “
Thermal Conduction in Doped Single-Crystal Silicon Films
,”
J. Appl. Phys.
,
91
(
8
), pp.
5079
5088
.
25.
Asheghi
,
M.
,
Leung
,
Y. K.
,
Wong
,
S. S.
, and
Goodson
,
K. E.
, 1997, “
Phonon-Boundary Scattering in Thin Silicon Layers
,”
Appl. Phys. Lett.
,
71
(
13
), pp.
1798
1800
.
26.
Narayanaswamy
,
A.
, and
Gu
,
N.
, 2011, “
Heat Transfer From Freely Suspended Biomaterial Microcantilevers
,”
J. Heat Transfer
,
133
(
4
), p.
042401
.
27.
von
Arx
,
M.
,
Paul
,
O.
, and
Baltes
,
H.
, 2000, “
Process-Dependent Thin-Film Thermal Conductivities for Thermal CMOS MEMS
,”
J. Microelectromech. Syst.
,
9
(
1
), pp.
136
145
.
28.
Tai
,
Y. C.
,
Mastrangelo
,
C. H.
, and
Muller
,
R. S.
, 1988, “
Thermal Conductivity of Heavily Doped Low-Pressure Chemical Vapor Deposited Polycrystalline Silicon Films
,”
J. Appl. Phys.
,
63
(
5
), pp.
1442
1447
.
29.
Tai
,
Y. C.
,
Mastrangelo
,
C. H.
, and
Muller
,
R. S.
, 1987, “
Thermal Conductivity of Heavily Doped LPCVD Polysilicon
,”
Electron Devices Meeting
,
International
, Washington, D.C.
30.
Irace
,
A.
, and
Sarro
,
P. M.
, 1999, “
Measurement of Thermal Conductivity and Diffusivity of Single and Multilayer Membranes
,”
Sens. Actuators, A
,
76
(
1–3
), pp.
323
328
.
31.
Graham
,
S.
,
Olson
,
B.
,
Wong
,
C.
, and
Piekos
,
E.
, 2003, “
The Effects of Processing Conditions on the Thermal Conductivity of Polycrystalline Silicon Films
,”
Electronic and Photonic Packaging, Electrical Systems and Photonic Design and Nanotechnology - 2003
, pp.
455
459
.
32.
DeWolf
,
I.
, 1996, “
Micro-Raman Spectroscopy to Study Local Mechanical Stress in Silicon Integrated Circuits
,”
Semicond. Sci. Technol.
,
11
(
2
), pp.
139
154
.
33.
Lee
,
H. F.
,
Kumar
,
S.
, and
Haque
,
M. A.
, “
Role of Mechanical Strain on Thermal Conductivity of Nanoscale Aluminum Films
,”
Acta Mater.
,
58
(
20
), pp.
6619
6627
.
34.
Zhang
,
D.
, and
Hayhurst
,
D. R.
, 2011, “
Influence of Applied In-Plane Strain on Transverse Thermal Conductivity of 0°/90° and Plain Weave Ceramic Matrix Composites
,”
Int. J. Solids Struct.
,
48
(
5
), pp.
828
842
.
35.
Matsuo
,
H.
, 1980, “
The Effect of Residual Strain on the Thermal Conductivity of Nuclear Graphite
,”
J. Nucl. Mater.
,
92
(
1
), pp.
39
42
.
36.
Li
,
X.-B.
,
Chen
,
Z.-Z.
, and
Shi
,
Er. -W.
, 2010, “
Effect of Doping on the Raman Scattering of 6H-SiC Crystals
,”
Physica B
,
405
(
10
), pp.
2423
2426
.
37.
Glassbrenner
,
C. J.
, and
Slack
,
G. A.
, 1964, “
Thermal Conductivity of Silicon + Germanium from 3 Degrees K to Melting Point
,”
Phys. Rev. A—Gen. Phys.
,
134
(
4A
), pp.
1058
1069
.
38.
Helwig
,
A.
,
Spannhake
,
J.
,
Muller
,
G.
,
Rosman
,
N.
, and
Pagnier
,
T.
, 2007, “
Temperature Characterization of Silicon Substrates for Gas Sensors by Raman Spectroscopy
,”
Sens. Actuators B
,
126
(
1
), pp.
240
244
.
You do not currently have access to this content.