Residual stresses in a stainless steel vessel containing glass have been evaluated using measurements and numerical simulation. High-level nuclear wastes are often vitrified in glass cast in cylindrical stainless steel containers. Knowledge of the internal stresses generated in both the glass and container during this process is critical to structural integrity and public safety. In this research, residual stresses were measured near the surface of a High Level Waste container using an Incremental Center Hole Drilling technique. Residual stress magnitudes were found to be at or near to the yield stress in the container wall. A transient finite-element thermal-stress model has been developed to simulate temperature, distortion, and stress during casting and cooling in a simple slice domain of both the glass and the container. Contact thermal-stress elements were employed to prevent penetration at the glass–container interface. Roughness of these contact surfaces was modeled as an equivalent air gap with temperature-dependent conductivity in the thermal model. The stress model features elastic-viscoplastic constitutive equations developed based on the temperature-dependent viscosity of the glass and elastic-plastic constitutive equations for the stainless steel. The simulation was performed using the commercial ABAQUS program with a user material subroutine. The model predictions are consistent with the residual stress measurements, and the complete thermal–mechanical behavior of the system is evaluated.

References

References
1.
Smith
,
D. J.
, 2003, “
The Influence of Prior Loading on Structural Integrity
,”
Comprehensive Structural Integrity
,
R. A.
Ainsworth
, and,
K. H.
Schwalbe
, eds.,
Elsevier
,
Amsterdam
, Vol.
7
, pp.
289
345
.
2.
Withers
,
P. J.
, 2007, “
Residual Stress and Its Role in Failure
,”
Rep. Prog. Phys.
,
70
,
p.
2211
.
3.
Withers
,
P. J.
, and
Bhadeshia
,
H. K. D. H.
, 2001, “
Residual Stress. Part 1-Measurement Techniques
,”
Mater. Sci.Technol.
,
17
, pp.
355
365
.
4.
Committee of Radioactive Waste Management
, 2006, “
Managing Our Radioactive Waste Safely
,”
CoRWM
,
London
, p.
195
.
5.
Deokattey
,
S.
,
Jahagirdar
,
P. B.
,
Kumar
,
V.
,
Bhaskar
,
N.
, and
Kalyane
,
V. L.
, 2003, “
Borosilicate Glass and Synroc R&D for Radioactive Waste Immobilization: An International Perspective
,”
J. Miner., Met. Mater. Soc.
,
55
, pp.
48
51
.
6.
Donald
,
I. W.
,
Metcalfe
,
B. L.
, and
Taylor
,
R. N. J.
, 1997,
The Immobilization of High Level Radioactive Wastes Using Ceramics and Glasses
,”
J. Mater. Sci.
32
, pp.
5851
5887
.
7.
Hidekazu
,
A.
, and
Masanori
,
A.
, 2005, “
Long-Term Integrity of Waste Package Final Closure for Hlw Geological Disposal, (I) Points at Issue Concerning 1,000 Years Containment Capability of Overpack
,”
J. Nucl. Sci. Technol.
,
42
, pp.
470
479
.
8.
International Atomic Energy Agency
, 2002, “
The Long-Term Storage of Radioactivity Waste: Safety and Sustainability
,”
Technical Committee Meetings, IAEA
,
Vienna, Austria
.
9.
Steele
,
C.
, 2005, “
Aspects of Process Monitoring in the Waste Vitrification Plants (Wvp) at Sellafield
,”
Advances in Process Analytics and Control Technology Conference
,
Birmingham
.
10.
Pennick
,
A. M.
, 1987, “
Summary of Stress Measurements Made on Glass Containers in the Full Scale Inactive Plant (1984-1986)
,”
BNFL
, p.
6
.
11.
Andersen
,
L. F.
, 2002, “
Experimental Method for Residual Stress Evaluation Through the Thickness of a Plate
,”
ASME J. Eng. Mater. Technol.
,
124
, pp.
428
433
.
12.
Ficquet
,
X.
,
Smith
,
D. J.
,
Truman
,
C. E.
,
Kingston
,
E. J.
, and
Dennis
,
R. J.
, 2009, “
Measurement and Prediction of Residual Stress in a Bead-on-Plate Weld Benchmark Specimen
,”
Int. J. Pressure Vessels Piping
,
86
, pp.
20
30
.
13.
Hossain
,
S.
,
Truman
,
C. E.
,
Smith
,
D. J.
, and
Daymond
,
M. R.
, 2006, “
Application of Quenching to Create Highly Triaxial Residual Stresses in Type 316h Stainless Steels
,”
Int. J. Mech. Sci.
,
48
, pp.
235
243
.
14.
Valente
,
T.
,
Bartuli
,
C.
,
Sebastiani
,
M.
, and
Loreto
,
A.
, 2005, “
Implementation and Development of the Incremental Hole Drilling Method for the Measurement of Residual Stress in Thermal Spray Coatings
,”
J. Therm. Spray Technol.
,
14
, pp.
462
470
.
15.
Nakhodchi
,
S.
,
Flewitt
,
P. E. J.
, and
Smith
,
D. J.
,2008, “
Stress Measurement in Porous Graphite at Different Length Scales
,”
Securing the Safe Performance of Graphite Reactor Cores
,
Royal Society of Chemistry
,
Nottingham, United Kingdom
.
16.
Shokrieh
,
M. M.
, and Ghasemi K, A. R., 2007, “
Determination of Calibration Factors of the Hole Drilling Method for Orthotropic Composites Using an Exact Solution
,”
J. Compos. Mater.
,
41
, pp.
2293
2311
.
17.
Schajer
,
G.
, and
Yang
,
L.
, 1994, “
Residual-Stress Measurement in Orthotropic Materials Using the Hole-Drilling Method
,”
Exp. Mech.
,
34
, pp.
324
333
.
18.
Bathgate
,
R. G.
, 1968, “
Measurement of Non-Uniform Biaxial Residual Stresss by the Hole Drilling Method
,”
Strain
,
4
, pp.
20
29
.
19.
Mathar
,
J.
, 1934, “
Determination of Initial Stresses by Measuring the Deformation Around Drilled Holes
,”
Trans. ASME
,
56
, pp.
249
254
.
20.
Rendler
,
N.
, and
Vigness
,
I.
, 1966, “
Hole-Drilling Strain-Gage Method of Measuring Residual Stresses
,”
Exp. Mech.
,
6
, pp.
577
586
.
21.
Schajer
,
G. S.
, 1988, “
Measurement of Non-Uniform Residual-Stresses Using the Hole-Drilling Method 1. Stress Calculation Procedures
,”
ASME J. Eng. Mater. Technol.
,
110
, pp.
338
343
.
22.
Schajer
,
G. S.
, 1981, “
Application of Finite Element Calculations to Residual Stress Measurements
,”
ASME J. Mater. Technol.
,
103
, pp.
157
163
.
23.
Schajer
,
G. S.
, 1998, “
Measurement of Non-Uniform Residual Stresses Using the Hole Drilling Method. Part II—Practical Application of the Integral Method
,”
ASME J. Eng. Mater. Technol.
,
110
, pp.
344
350
.
24.
Zuccarello
,
B.
, 1999, “
Optimal Calculation Steps for the Evaluation of Residual Stress by the Incremental Hole-Drilling Method
,”
Exp. Mech.
,
39
, pp.
117
124
.
25.
Stefanescu
,
D.
,
Truman
,
C.
,
Smith
,
D.
, and
Whitehead
,
P.
, 2006, “
Improvements in Residual Stress Measurement by the Incremental Centre Hole Drilling Technique
,”
Exp. Mech.
,
46
, pp.
417
427
.
26.
ASTM E 837-01, 2001, “
Standard Test Method for Determination Residual Stresses by the Hole Drilling Strain Gauge Method
.”
27.
Roberts
,
T.
, 2004, “
The Elevated Temperature Properties of Grade 309 Stainless Steel
,”
BNFL
, p.
25
.
28.
Koric
,
S.
, and
Thomas
,
G. B.
, 2007, “
Thermo-Mechanical Model of Solidification Processes With ABAQUS
,”
ABAQUS Users Conference
,
Paris, France
, pp.
320
336
.
29.
Koric
,
S.
, and
Thomas
,
B. G.
, 2006, “
Efficient Thermo-Mechanical Model for Solidification Processes
,”
Int. J. Numer. Methods Eng.
,
66
, pp.
1955
1989
.
30.
Koric
,
S.
,
Hibbeler
,
L. C.
, and
Thomas
,
G. B.
, 2009, “
Explicit Coupled Thermo-Mechanical Finite Element Model of Steel Solidification
,”
Int. J. Numer. Methods Eng.
,
78
, pp.
1
31
.
31.
Zhu
,
H.
, 1993, “
Coupled Thermal–Mechanical Finite-Element Model With Application to Initial Solidification
,” Ph.D. thesis, Department of Mechanical and Industrial Engineering, University of Illinois, Urbana, USA.
32.
Li
,
C.
, and
Thomas
,
B. G.
, 2005, “
Thermo-Mechanical Finite-Element Model of Shell Behavior in Continuous Casting of Steel
,”
Metall. Mater. Trans. B
,
35
, pp.
1151
1172
.
33.
Budinski
,
K. G.
, and
Budinski
,
M. K.
, 2005,
Engineering Materials Properties and Selection
,”
Prentice Hall
,
Upper Saddle River, NJ
.
34.
Aben
,
H.
, and
Guillemet
,
C.
, 1993, “
Photoelasticity of Glass
,”
Springer-Verlag
,
Berlin
.
35.
Carre
,
H.
, and
Daudeville
,
L.
, 1996, “
Numerical Simulation of Soda-Lime Silicate Glass Tempering
,”
J. Phys. IV France
06 C1-175-C171-185.
36.
Indenbom
,
V. L.
, 1954, “
A Theory of Glass Annealing
,”
Zhurnal Sakharnoi Promyshlennosti
,
24
, pp.
925
928
.
37.
Narayanaswamy
,
O. S.
, 1978, “
Stress and Structural Relaxation in Tempering Glass
,”
J. Am. Ceram. Soc.
,
61
, pp.
146
152
.
38.
Parsa
,
M. H.
,
Rad
,
M.
,
Shahhosseini
,
M. R.
, and
Shahhosseini
,
M. H.
, 2005, “
Simulation of Windscreen Bending Using Viscoplastic Formulation
,”
J. Mater. Process. Technol.
,
170
, pp.
298
303
.
39.
Moreau
,
P.
,
Lochegnies
,
D.
, and
Oudin
,
J.
, 1998, “
An Inverse Method for Prediction of the Required Temperature Distribution in the Creep Forming Process
,”
Proc. Inst. Mech. Eng., Part E: J. Process Mech. Eng.
,
212
, pp.
7
11
.
40.
Locheginies
,
D.
,
Moreau
,
P.
, and
Oudinn
,
J.
, 1996, “
Finte Element Strategy for Glass Sheet Manufacture by Creep Forming
,”
Commun. Numer. Methods Eng.
,
12
, pp.
331
341
.
41.
Park
,
J. K.
,
Thomas
,
B. G.
, and
Samarasekera
,
I. V.
, 2002, “
Analysis of Thermomechanical Behaviour in Billet Casting With Different Mould Corner Radii
,”
Ironmaking Steelmaking
,
29
, pp.
359
375
.
42.
Thomas
,
B.
,
Samarasekera
,
I.
, and
Brimacombe
,
J.
, 1987, “
Mathematical Model of the Thermal Processing of Steel Ingots: Part I. Heat Flow Model
,”
Metall. Mater. Trans. B
,
18
, pp.
119
130
.
43.
Thomas
,
B. G.
, 1995, “
Issues in Thermal–Mechanical Modeling of Casting Processes
,”
ISIJ Int.
,
35
, pp.
737
743
.
44.
Anurag
,
J.
,
Gregory
,
C. F.
, and
Allen
,
Y. Y.
, 2005, “
Viscosity Measurement by Cylindrical Compression for Numerical Modeling of Precision Lens Molding Process
,”
J. Am. Ceram. Soc.
,
88
, pp.
2409
2414
.
45.
Fulcher
,
G. S.
, 1925, “
Analysis of Recent Measurement of the Viscosity of Glasses
,”
J. Am. Ceram. Soc.
,
8
, pp.
339
355
.
46.
Dassault Crop.
, 2008, “
abaqus User Manuals
,”
abaqus, Inc.
,
Pawtucket, RI
.
47.
AydIner
,
C. C.
, and Üstü
ndag
,
E.
, 2005, “
Residual Stresses in a Bulk Metallic Glass Cylinder Induced by Thermal Tempering
,”
Mech. Mater.
,
37
, pp.
201
212
.
48.
Yu ncu
,
H.
, 2006, “
Thermal Contact Conductance of Nominally Flat Surfaces
,”
ASME Heat Mass Transfer
,
43
, pp.
1
5
You do not currently have access to this content.