Finite element analyses of oxygen diffusion at the grain level have been carried out for a polycrystalline nickel-based superalloy, aiming to quantify the oxidation damage under surface oxidation conditions at high temperature. Grain microstructures were considered explicitly in the finite element model where the grain boundary was taken as the primary path for oxygen diffusion. The model has been used to simulate natural diffusion of oxygen at temperatures between 650C and 800C, which are controlled by the parabolic oxidation rate and oxygen diffusivity. To study the effects of mechanical stress on oxygen diffusion, a sequentially coupled deformation-diffusion analysis was carried out for a generic specimen geometry under creep loading condition using a submodeling technique. The material constitutive behavior was described by a crystal plasticity model at the grain level and a unified viscoplasticity model at the global level, respectively. The stress-assisted oxygen diffusion was driven by the gradient of hydrostatic stress in terms of pressure factor. Heterogeneous deformation presented at the grain level imposes a great influence on oxygen diffusion at 750C and above, leading to further penetration of oxygen into the bulk material. Increased load level and temperature enhance oxygen concentration and penetration within the material. At 700C and below, mechanical loading seems to have negligible influence on the oxygen penetration because of the extremely low values of oxygen diffusivity and pressure factor. In the case of an existing surface microcrack, oxygen tends to accumulate around the crack tip due to the high stress level presented near the crack tip, leading to localized material embrittlement and promotion of rapid crack propagation.

References

References
1.
Bricknell
,
R. H.
, and
Woodford
,
D. A.
, 1982, “
The Mechanism of Cavity Formation During High Temperature Oxidation of Nickel
,”
Acta Metall.
,
30
, pp.
257
264
.
2.
Calvarin-Amiri
,
G.
,
Huntz
,
A. M.
, and
Molins
,
R.
, 2001, “
Effect of an Applied Stress on the Growth Kinetics of Oxide Scales Formed on Ni-20Cr Alloys
,”
Mater. High Temp.
,
18
, pp.
91
99
.
3.
Garat
,
V.
,
Brucelle
,
O.
,
Cloue
,
J.-M.
,
Rebeyrolle
,
V.
,
Monceau
,
D.
,
Viguier
,
B.
, and
Andrieu
,
E.
, 2004, “
Comparing Different Methods to Determine the Intergranular Oxidation Damage on a Nickel Based Superalloy
,”
Mater. Sci. Forum
,
461–464
, pp.
537
544
.
4.
Andrieu
,
E.
, and
Molins
,
R.
, 1992, “
Intergranular Crack Tip Oxidation Mechanism in a Nickel-Based Superalloy
,”
Mater. Sci. Eng., A
,
154
, pp.
21
28
.
5.
Andrieu
,
E.
,
Hoshstetter
,
G.
,
Molins
,
R.
, and
Pineau
,
A.
, 1997, “
Oxidation and Intergranular Cracking Behaviour of Two High Strength Ni-Base Superalloys
,”
Corrosion-Deformation Interactions (EFC 21)
,
T.
Magnin
, ed., pp.
461
475
.
6.
Miller
,
C. F.
,
Simmons
,
G. W.
, and
Wei
,
R. P.
, 2001, “
Mechanism of Oxygen Enhanced Crack Growth in Inconel 718
,”
Scr. Mater.
,
44
, pp.
2405
2410
.
7.
Miller
,
C. F.
,
Simmons
,
G. W.
, and
Wei
,
R. P.
, 2003, “
Evidence of Internal Oxidation During Oxygen Enhanced Crack Growth in P/M Ni-Based Superalloys
,”
Scr. Mater.
,
48
, pp.
103
108
.
8.
Tong
,
J.
,
Dalby
,
S.
, and
Byrne
,
J.
, 2005, “
Crack Growth in a New Nickel-Based Superalloy at Elevated Temperature, Part III: Characterisation
,”
J. Mater. Sci.
,
40
, pp.
1237
1243
.
9.
Molins
,
R.
,
Hochestetter
,
G.
,
Chassaigne
,
J. C.
, and
Andrieu
,
E.
, 1997, “
Oxidation Effects on the Fatigue Crack Growth of Alloy 718 at High Temperature
,”
Acta Mater.
,
45
, pp.
663
674
.
10.
Moulin
,
G.
,
Arevalo
,
P.
, and
Salleo
,
A.
, 1996, “
Influence of External Mechanical Loadings (Creep, Fatigue) on Oxygen Diffusion During Nickel Oxidation
,”
Oxid. Met.
,
45
, pp.
153
181
.
11.
Berger
,
P.
,
Moulin
,
G.
, and
Viennot
,
M.
, 1997, “
Nuclear Microprobe Study of Stress-Oxidation of Nickel
,”
Nucl. Instrum. Methods Phys. Res. B
,
130
, pp.
717
721
.
12.
Berger
,
P.
,
Gaillet
,
L.
,
El Tahhann
,
R.
,
Moulin
,
G.
, and
Viennot
,
M.
, 2001, “
Oxygen Diffusion Studies in Oxide Scales Thermally Grown or Deposited on Mechanically Loaded Metallic Surfaces (MS-P2)
,”
Nucl. Instrum. Methods Phys. Res. B
,
181
, pp.
382
388
.
13.
Zhou
,
C. H.
,
Ma
,
H. T.
, and
Wang
,
L.
, 2010, “
Comparative Study of Oxidation Kinetics for Pure Nickel Oxidized Under Tensile and Compressive Stress
,”
Corros. Sci.
,
52
, pp.
210
215
.
14.
Krupp
,
U.
, 2010, “
Nitridation of Alloys
,”
Shreir’s Corrosion
,
1
, pp.
304
315
.
15.
Pfaendtner
,
J. A.
, and
McMahon
,
C. J.
, Jr.
, 2001, “
Oxygen-Induced Intergranular Cracking of a Ni-Base Alloy at Elevated Temperatures—An Example of Dynamic Embrittlement
,”
Acta Mater.
,
49
, pp.
3369
3377
.
16.
Krupp
,
U.
,
Kane
,
W. M.
,
Laird
,
C.
, and
McMahon
,
C. J.
, Jr.
, 2004, “
Brittle Intergranular Fracture of a Ni-Base Superalloy at High Temperatures by Dynamic Embrittlement
,”
Mater. Sci. Eng., A
,
387–389
, pp.
409
413
.
17.
Krupp
,
U.
, 2005, “
Dynamic Embrittlement—Time-Dependent Quasi-Brittle Intergranular Fracture at High Temperatures
,”
Int. Mater. Rev.
,
50
, pp.
83
97
.
18.
Carranza
,
F. L.
, and
Haber
,
R. B.
, 1999, “
A Numerical Study of Intergranular Fracture and Oxygen Embrittlement in an Elastic-Viscoplastic Solid
,”
J. Mech. Phys. Solids
,
47
, pp.
27
58
.
19.
Zhao
,
L. G.
,
Tong
,
J.
, and
Hardy
,
M. C.
, 2010, “
Prediction of Crack Growth for a Nickel Base Superalloy Under Fatigue-Oxidation Condition
,”
Eng. Fract. Mech.
,
77
, pp.
925
938
.
20.
Li
,
J. C. M.
,
Oriani
,
R. A.
, and
Darken
,
L. S.
, 1966, “
The Thermodynamics of Stressed Solids
,”
Z. Phys. Chem., Neue Folge
,
49
, pp.
271
290
.
21.
Latché
,
F. C.
, and
Cahn
,
J. I.
, 1982, “
The Effect of Self-Stress on Diffusion in Solids
,”
Acta Metall.
,
30
, pp.
1835
1845
.
22.
Stephenson
,
G. B.
, 1988, “
Deformation During Interdiffusion
,”
Acta Metall.
,
36
, pp.
2663
2683
.
23.
Bika
,
D.
, and
McMahon
,
C. J.
, Jr.
, 1995, “
A Model for Dynamic Embrittlement
,”
Acta Metall. Mater.
,
43
, pp.
1909
1916
.
24.
Hancock
,
P.
, and
Fletcher
,
R.
, 1966, “
The Oxidation of Nickel in the Temperature Range 700-1100∘C
,”
Metallurgie
,
6
, pp.
1
9
.
25.
Woodford
,
D. A.
, and
Bricknell
,
R. H.
, 1983, “
Environmental Embrittlement of High Temperature Alloys by Oxygen
,”
Treatise Mater. Sci. Tech.
,
25
, pp.
157
199
.
26.
Trindade
,
V. B.
,
Krupp
,
U.
,
Wagenhuber
,
Ph. E. -G. E.-G.
,
Virkar
,
Y. M.
, and
Christ
,
H.-J.
, 2005, “
Studying the Role of the Alloy-Grain-Boundary Character During Oxidation of Ni-Base Alloys by Means of the Electron Back-Scattered Diffraction Technique
,”
Mater. High Temp.
,
22
, pp.
207
212
.
27.
Encina-Oropesa
,
A.
,
Drew
,
G. L.
,
Hardy
,
M. C.
,
Leggett
,
A. J.
,
Nicholls
,
J. R.
, and
Simms
,
N. J.
, 2008, “
Effects of Oxidation and Hot Corrosion in a Nickel Disc Alloy
,”
The 11th International Symposium on Superalloys
,
Champion, PA
, Sept. 14–18.
28.
Karabela
,
A.
,
Zhao
,
L. G.
,
Tong
,
J.
,
Simms
,
N. J.
,
Nicholls
,
J. R.
, and
Hardy
,
M. C.
, 2011, “
Effect of Cyclic Stress and Exposure Temperature on Oxidation Damage for a Nickel-Based Superalloy
,”
Mater. Sci. Eng., A
, DOI: 10.1016/j.msea.2011.04.029.
29.
Lin
,
B.
,
Zhao
,
L. G.
,
Tong
,
J.
, and
Christ
,
H.-J.
, 2010, “
Crystal Plasticity Modeling of Cyclic Deformation for a Polycrystalline Nickel-Based Superalloy at High Temperature
,”
Mater. Sci. Eng., A
,
527
, pp.
3581
3587
.
30.
Lin
,
B.
,
Zhao
,
L. G.
, and
Tong
,
J.
, 2011, “
A Crystal Plasticity Study of Cyclic Constitutive Behaviour, Crack-Tip Deformation and Crack-Growth Path for a Polycrystalline Nickel-Based Superalloy
,”
Eng. Fract. Mech.
,
78
, pp.
2174
2192
.
31.
Sofronis
,
P.
, and
McMeeking
,
R. M.
, 1989, “
Numerical Analysis of Hydrogen Transport Near a Blunting Crack Tip
,”
J. Mech. Phys. Solids
,
37
, pp.
317
350
.
32.
Yokobori
,
A. T.
, Jr.
,
Chinda
,
Y.
,
Nemoto
,
T.
,
Satoh
,
K.
, and
Yamada
,
T.
, 2002, “
The Characteristics of Hydrogen Diffusion and Concentration Around a Crack Tip Concerned With Hydrogen Embrittlement
,”
Corros. Sci.
,
44
, pp.
407
424
.
33.
Suo
,
Z.
,
Kubair
,
D. V.
,
Evans
,
A. G.
,
Clarke
,
D. R.
, and
Tolpygo
,
V. K.
, 2003, “
Stresses Induced in Alloys by Selective Oxidation
,”
Acta Mater.
,
51
, pp.
959
974
.
34.
El Kadiri
,
H.
,
Horstemeyer
,
M. F.
, and
Bammann
,
D. J.
, 2008, “
A Theory for Stress-Driven Interfacial Damage Upon Cationic-Selective Oxidation of Alloys
,”
J. Mech. Phys. Solids
,
56
, pp.
3392
3415
.
35.
Wu
,
C. H.
, 2001, “
The Role of Eshelby Stress in Composition-Generated and Stress-Assisted Diffusion
,”
J. Mech. Phys. Solids
,
49
, pp.
1771
1794
.
36.
Chaboche
,
J. L.
, 1989, “
Constitutive Equations for Cyclic Plasticity and Cyclic Viscoplasticity
,”
Int. J. Plast.
,
5
, pp.
247
302
.
37.
Busso
,
E. P.
, 1990, “
Cyclic Deformation of Monocrystalline Nickel Aluminide and High Temperature Coatings
,” Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA.
38.
Dennis
,
R. J.
, 2000, “
Mechanistic Modelling of Deformation and Void Growth Behaviour in Superalloy Single Crystals
,” Ph.D. thesis, Imperial College London, London, UK.
39.
Bower
,
A. F.
, and
Wininger
,
E.
, 2004, “
A Two-Dimensional Finite Element Method for Simulating the Constitutive Response and Microstructure of Polycrystals During High Temperature Plastic Deformation
,”
J. Mech. Phys. Solids
,
52
, pp.
1289
1317
.
40.
Onck
,
P.
, and
van der Giessen
,
E.
, 1998, “
Micromechanics of Creep Fracture: Simulation of Intergranular Crack Growth
,”
Comput. Mater. Sci.
,
13
, pp.
90
102
.
41.
2009, ABAQUS, Version 6.8, Dassault Systemes Simulia Corp., Providence, RI.
42.
Busso
,
E. P.
,
Meissonnier
,
F. T.
, and
O’Dowd
,
N. P.
, 2000, “
Gradient-Dependent Deformation of Two-Phase Single Crystals
,”
J. Mech. Phys. Solids
,
48
, pp.
2333
2361
.
43.
Meissonnier
,
F. T.
,
Busso
,
E. P.
, and
O’Dowd
,
N. P.
, 2001, “
Finite Element Implementation of a Generalized Non-Local Rate-Dependent Crystallographic Formulation for Finite Strains
,”
Int. J. Plast.
,
17
, pp.
601
640
.
44.
Zhao
,
L. G.
, and
Tong
,
J.
, 2008, “
A Viscoplastic Study of Crack Tip Deformation and Crack Growth in a Nickel Based Superalloy at Elevated Temperature
,”
J. Mech. Phys. Solids
,
56
, pp.
3363
3378
.
45.
Zhan
,
Z. L.
, 2004, “
A Study of Cyclic Plasticity and Viscoplasticity in a New Nickel-Based Superalloy Using Unified Constitutive Equations
,” Ph.D. thesis, University of Portsmouth, Portsmouth, Hampshire, UK.
46.
Zhan
,
Z. L.
, and
Tong
,
J.
, 2007, “
A Study of Cyclic Plasticity and Viscoplasticity in a New Nickel-Based Superalloy Using Unified Constitutive Equations. Part I: Evaluation and Determination of Material Parameters
,”
Mech. Mater.
,
39
, pp.
64
72
.
47.
Chen
,
J. H.
,
Rogers
,
P. M.
, and
Little
,
J. A.
, 1997, “
Oxidation Behaviour of Several Chromia-Forming Commercial Nickel-Base Superalloys
,”
Oxid. Met.
,
47
, pp.
381
410
.
48.
Ghonem
,
H.
, and
Zheng
,
D.
, 1992, “
Depth of Intergranular Oxygen Diffusion During Environment-Dependent Fatigue Crack Growth in Alloy 718
,”
Mater. Sci. Eng., A
,
150
, pp.
151
160
.
49.
Herring
,
C.
, 1951, “
Surface Diffusion as a Motivation for Sintering
,”
The Physics of Powder Metallurgy
,
W. E.
Kingston
, ed.,
McGraw-Hill
,
New York
, pp.
143
179
.
50.
Exner
,
H. E.
, and
Arzt
,
E.
, 1983, “
Sintering Processes
,”
Physical Metallurgy
,
R. W.
Cahn
and
P.
Haasen
, eds.,
Barking
,
Essex, UK
, pp.
1885
1912
.
51.
Reidel
,
H.
, 1987,
Fracture at High Temperatures
,
Springer
,
Berlin
.
52.
Mullins
,
W. W.
, 1957, “
Theory of Thermal Grooving
,”
J. Appl. Phys.
,
28
, pp.
333
339
.
53.
Génin
,
F. Y.
,
Mullins
,
W. W.
, and
Wynblatt
,
P.
, 1993, “
The Effect of Stress on Grain Boundary Grooving
,”
Acta Metall. Mater.
,
41
, pp.
3541
3547
.
54.
Zhang
,
W.
, and
Schneibel
,
J. H.
, 1995, “
Numerical Simulation of Grain-Boundary Grooving by Surface Diffusion
,”
Comput. Mater. Sci.
,
3
, pp.
347
358
.
55.
Karapanagiotis
,
I.
,
Evans
,
D. F.
, and
Gerberich
,
W. W.
, 2002, “
Dynamics of Levelling Process of Nanoindentation Induced Defects on Thin Polystyrene Films
,”
Polymer
,
43
, pp.
1343
1348
.
You do not currently have access to this content.