Shape memory polymers (SMPs) are a group of adaptive polymers that can recover the permanent shape from a temporary shape by external stimuli on demand. Among a variety of external stimuli for polymer actuation, temperature is the most extensively used. In SMP applications, one of the major design considerations is the time necessary to recover the shape without external deformation constraints, or free recovery, and the amount of the recoverable strain. This paper investigates the amount of the recoverable strain and the recovery rate of an epoxy-based SMP (Veriflex® E, VFE1-62 (CRG, Dayton, OH)) under different thermal conditions. In particular, the free recovery behaviors of the SMPs under two experimental protocols, isothermal and shape memory (SM) cycle, are studied. It is found that free recovery in isothermal experiments is much faster than that in a SM cycle at the same recovering temperature and the material is fully recoverable at the temperature above differential scanning calorimetry Tg. Furthermore, for the recovery in SM cycle experiments, reshaping the sample at a low temperature and recovering from the deformation at a high temperature yield the fastest recovery rate, while reshaping at a high temperature and recovering at a low temperature cannot recover the original shape within this work’s experimental time frame. The possible mechanism for these observations is discussed.

1.
Lendlein
,
A.
, and
Kelch
,
S.
, 2002, “
Shape-Memory Polymers
,”
Angew. Chem., Int. Ed.
1433-7851,
41
(
12
), pp.
2034
2057
.
2.
Lendlein
,
A.
,
Kelch
,
S.
,
Kratz
,
K.
, and
Schulte
,
J.
, 2005, “
Shape Memory Polymers
,”
Encyclopedia of Materials: Science and Technology
,
Elsevier
,
Amsterdam, The Netherlands
.
3.
Liu
,
C.
,
Qin
,
H.
, and
Mather
,
P. T.
, 2007, “
Review of Progress in Shape-Memory Polymers
,”
J. Mater. Chem.
0959-9428,
17
(
16
), pp.
1543
1558
.
4.
Mather
,
P. T.
,
Luo
,
X.
, and
Rousseau
,
I. A.
, 2009, “
Shape Memory Polymer Research
,”
Annu. Rev. Mater. Res.
1531-7331,
39
, pp.
445
471
.
5.
Wei
,
Z. G.
,
Sandstroröm
,
R.
, and
Miyazaki
,
S.
, 1998, “
Shape-Memory Materials and Hybrid Composites for Smart Systems: Part I Shape-Memory Materials
,”
J. Mater. Sci.
0022-2461,
33
, pp.
3743
3762
.
6.
Lendlein
,
A.
, and
Langer
,
R.
, 2002, “
Biodegradable, Elastic Shape-Memory Polymers for Potential Biomedical Applications
,”
Science
0036-8075,
296
(
5573
), pp.
1673
1676
.
7.
Yakacki
,
C. M.
,
Shandas
,
R.
,
Lanning
,
C.
,
Rech
,
B.
,
Eckstein
,
A.
, and
Gall
,
K.
, 2007, “
Unconstrained Recovery Characterization of Shape-Memory Polymer Networks for Cardiovascular Applications
,”
Biomaterials
0142-9612,
28
(
14
), pp.
2255
2263
.
8.
Yakacki
,
C. M.
,
Shandas
,
R.
,
Safranski
,
D.
,
Ortega
,
A. M.
,
Sassaman
,
K.
, and
Gall
,
K.
, 2008, “
Strong, Tailored, Biocompatible Shape-Memory Polymer Networks
,”
Adv. Funct. Mater.
1616-301X,
18
(
16
), pp.
2428
2435
.
9.
Lendlein
,
A.
,
Zotzmann
,
J.
,
Feng
,
Y.
,
Alteheld
,
A.
, and
Kelch
,
S.
, 2009, “
Controlling the Switching Temperature of Biodegradable, Amorphous, Shape-Memory Poly(rac-lactide)urethane Networks by Incorporation of Different Comonomers
,”
Biomacromolecules
1525-7797,
10
(
4
), pp.
975
982
.
10.
Yakacki
,
M. C.
, and
Gall
,
K.
, 2010, “
Shape-Memory Polymers for Biomedical Applications
,”
Adv. Polym. Sci.
0065-3195,
226
, pp.
147
175
.
11.
Reed
,
J. L.
,
Hemmelgarn
,
C. D.
,
Pelley
,
B. M.
, and
Havens
,
E.
, 2005, “
Adaptive Wing Structures
,”
SPIE Conference
, San Diego, CA.
12.
Dietsch
,
B.
, and
Tong
,
T.
, 2007, “
A Review—Features and Benefits of Shape Memory Polymers
,”
J. Adv. Mater.
1070-9789,
39
(
2
), pp.
3
12
.
13.
Hermiller
,
J. M.
,
Havens
,
D. E.
, and
Qi
,
H. J.
, 2008, “
Design Methodology for Attaching Morphing Components
,”
International SAMPE Technical Conference
.
14.
Margraf
,
T.
, 2008, “
Reflexive Composites: Self-Healing Composite Structures
,”
SPIE Conference
, San Diego, CA.
15.
Cable
,
K.
, and
Hermiller
,
J. A.
, 2009, “
Development of a Shape Memory Polymer Fastening System
,”
SPIE Conference
, San Diego, CA.
16.
Liu
,
Y.
,
Gall
,
K.
,
Dunn
,
M. L.
,
Greenberg
,
A. R.
, and
Diani
,
J.
, 2006, “
Thermomechanics of Shape Memory Polymers: Uniaxial Experiments and Constitutive Modeling
,”
Int. J. Plast.
0749-6419,
22
(
2
), pp.
279
313
.
17.
Qi
,
H. J.
,
Nguyen
,
T. D.
,
Castro
,
F.
,
Yakacki
,
C. M.
, and
Shandas
,
R.
, 2008, “
Finite Deformation Thermo-Mechanical Behavior of Thermally Induced Shape Memory Polymers
,”
J. Mech. Phys. Solids
0022-5096,
56
(
5
), pp.
1730
1751
.
18.
Behl
,
M.
, and
Lendlein
,
A.
, 2007, “
Shape-Memory Polymers
,”
Mater. Today
1369-7021,
10
(
4
), pp.
20
28
.
19.
Behl
,
M.
,
Ridder
,
U.
,
Feng
,
Y.
,
Kelch
,
S.
, and
Lendlein
,
A.
, 2009, “
Shape-Memory Capability of Binary Multiblock Copolymer Blends With Hard and Switching Domains Provided by Different Components
,”
Soft Matter
1744-683X,
5
(
3
), pp.
676
684
.
20.
Yakacki
,
C. M.
,
Satarkar
,
N. S.
,
Gall
,
K.
,
Likos
,
R.
, and
Hilt
,
J. Z.
, 2009, “
Shape-Memory Polymer Networks With Fe3O4 Nanoparticles for Remote Activation
,”
J. Appl. Polym. Sci.
0021-8995,
112
(
5
), pp.
3166
3176
.
21.
Westbrook
,
K. K.
,
Castro
,
F.
,
Long
,
K. N.
,
Slifka
,
A. J.
, and
Qi
,
H. J.
, 2010, “
Improved Testing System for Thermomechanical Experiments on Polymers Using Uniaxial Compression Equipment
,”
Polym. Test.
0142-9418,
29
, pp.
503
512
.
22.
Nguyen
,
T. D.
,
Qi
,
H. J.
,
Castro
,
F.
, and
Long
,
K. N.
, 2008, “
A Thermoviscoelastic Model for Amorphous Shape Memory Polymers: Incorporating Structural and Stress Relaxation
,”
J. Mech. Phys. Solids
0022-5096,
56
(
9
), pp.
2792
2814
.
23.
Castro
,
F.
,
Westbrook
,
K. K.
,
Long
,
K. N.
,
Shandas
,
R.
, and
Qi
,
H. J.
, 2009, “
Effects of Thermal Rates on the Thermomechanical Behaviors of Amorphous Shape Memory Polymers
,”
Mech. Time-Depend. Mater.
1385-2000,
14
(
3
), pp.
219
241
.
You do not currently have access to this content.