Abstract

A material model for the fracturing behavior for braided composites is developed and implemented in a material subroutine for use in the commercial explicit finite element code ABAQUS. The subroutine is based on the microplane model in which the constitutive behavior is defined not in terms of stress and strain tensors and their invariants but in terms of stress and strain vectors in the material mesostructure called the “microplanes.” This is a semi-multiscale model, which captures the interactions between inelastic phenomena such as cracking, splitting, and frictional slipping occurring on planes of various orientations though not the interactions at a distance. To avoid spurious mesh sensitivity due to softening, the crack band model is adopted. Its band width, related to the material characteristic length, serves as the localization limiter. It is shown that the model can realistically predict the orthotropic elastic constants and the strength limits. More importantly, the present model can also fit the tests of size effect on the strength of notched specimens and the post-peak behavior, which have been conducted for this purpose. When used in the ABAQUS software, the model gives a realistic picture of the axial crushing of a braided tube by a divergent plug.

1.
Cox
,
B. N.
,
Dadkhah
,
M. S.
,
Morris
,
W. L.
, and
Flintoff
,
J. G.
, 1994, “
Failure Mechanisms of 3D Woven Composites in Tension, Compression, and Bending
,”
Acta Metall. Mater.
0956-7151,
42
, pp.
3967
3984
.
2.
Quek
,
S. C.
,
Waas
,
A. M.
,
Shahwan
,
K. W.
, and
Agaram
,
V.
, 2004, “
Compressive Response and Failure of Braided Textile Composites: Part 1 Experiments
,”
Int. J. Non-Linear Mech.
0020-7462,
39
(
4
), pp.
635
648
.
3.
Song
,
S.
,
Waas
,
A. M.
,
Shahwan
,
K. W.
,
Xiao
,
X.
, and
Faruque
,
O.
, 2007, “
Braided Textile Composites Under Compressive Loads: Modeling the Response, Strength and Degradation
,”
Compos. Sci. Technol.
0266-3538,
67
(
15–16
), pp.
3059
3070
.
4.
Chou
,
T. -W.
, 1992,
Microstructural Design of Fiber Composites
,
Cambridge Solid State Science Series
,
Cambridge University Press
,
Cambridge, UK
.
5.
Dadkhah
,
M. S.
,
Cox
,
B. N.
, and
Morris
,
W. L.
, 1995, “
Compression—Compression Fatigue of 3D Woven Composites
,”
Acta Metall. Mater.
0956-7151,
43
(
12
), pp.
4235
4245
.
6.
Bažant
,
Z. P.
, and
Cedolin
,
L.
, 1991,
Stability of Structures
,
Oxford University Press
,
Oxford, NY
and (3rd Ed., World Scientific Publishing, Singapore and London, 2010).
7.
Bažant
,
Z. P.
, 1968, “
Effect of Folding of Reinforcing Fibers on the Elastic Moduli and Strength of Composite Materials
,”
Mekh. Polim.
0025-8865,
4
, pp.
314
321
(in Russian).
8.
Waas
,
A. M.
, and
Schultheisz
,
C. R.
, 1996, “
Compressive Failure of Composites, Part II: Experimental Studies
,”
Prog. Aerosp. Sci.
0376-0421,
32
(
1
), pp.
43
78
.
9.
Quek
,
S. C.
,
Waas
,
A. M.
,
Shahwan
,
K. W.
, and
Agaram
,
V.
, 2003, “
Analysis of 2D Triaxial Flat Braided Textile Composites
,”
Int. J. Mech. Sci.
0020-7403,
45
, pp.
1077
1096
.
10.
Quek
,
S. C.
,
Waas
,
A. M.
,
Shahwan
,
K. W.
, and
Agaram
,
V.
, 2003, “
Compressive Response and Failure of Braided Textile Composites: Part 2––Computations
,”
Int. J. Non-Linear Mech.
0020-7462,
39
(
4
), pp.
650
663
.
11.
Whitcomb
,
J. M.
, and
Noh
,
J.
, 2000, “
Concise Derivation of Formulas for 3D Sublaminate Homogenization
,”
J. Compos. Mater.
0021-9983,
34
, pp.
522
535
.
12.
Sankar
,
B. V.
, and
Marrey
,
R. V.
, 1993, “
A Unit-Cell Model of Textile Composite Beams for Predicting Stiffness Properties
,”
Compos. Sci. Technol.
0266-3538,
49
, pp.
61
69
.
13.
Bažant
,
Z. P.
,
Adley
,
M. D.
,
Carol
,
I.
,
Jirásek
,
M.
,
Akers
,
S. A.
,
Rohani
,
B.
,
Cargile
,
J. D.
, and
Caner
,
F. C.
, 2000, “
Large-Strain Generalization of Microplane Model for Concrete and Application
,”
J. Eng. Mech.
0733-9399,
126
(
9
), pp.
971
980
.
14.
Bažant
,
Z. P.
,
Caner
,
F. C.
,
Carol
,
I.
,
Adley
,
M. D.
, and
Akers
,
S. A.
, 2000, “
Microplane Model M4 for Concrete: I. Formulation With Work-Conjugate Deviatoric Stress
,”
J. Eng. Mech.
0733-9399,
126
(
9
), pp.
954
961
.
15.
Bažant
,
Z. P.
,
Caner
,
F. C.
,
Adley
,
M. A.
, and
Akers
,
S. A.
, 2000, “
Incorporation of Rate Effects of Fracturing and Creep Into Microplane Model for Concrete Dynamics
,”
J. Eng. Mech.
0733-9399,
126
(
9
), pp.
962
970
.
16.
Bažant
,
Z. P.
, and
Ožbolt
,
J.
, 1990, “
Nonlocal Microplane Model for Fracture, Damage, and Size Effect in Structures
,”
J. Eng. Mech.
0733-9399,
116
(
11
), pp.
2484
2504
.
17.
Bažant
,
Z. P.
, and
Prat
,
P. C.
, 1988, “
Microplane Model for Brittle Plastic Material: I. Theory
,”
J. Eng. Mech.
0733-9399,
114
, pp.
1672
1688
.
18.
Bažant
,
Z. P.
, and
Prat
,
P. C.
, 1988, “
Microplane Model for Brittle Plastic Material: II. Verification
,”
J. Eng. Mech.
0733-9399,
114
, pp.
1689
1702
.
19.
Bažant
,
Z. P.
, and
Oh
,
B. -H.
, 1983, “
Microplane Model for Fracture Analysis of Concrete Structures
,”
Proceedings of the First International Symposium on the Interaction of Non-Nuclear Munitions With Structures
, U.S. Air Force Academy, Colorado Springs, CO, pp.
49
53
.
20.
Bažant
,
Z. P.
, and
Oh
,
B. -H.
, 1985, “
Microplane Model for Progressive Fracture of Concrete and Rock
,”
J. Eng. Mech.
0733-9399,
111
, pp.
559
582
.
21.
Bažant
,
Z. P.
, and
Oh
,
B. -H.
, 1986, “
Efficient Numerical Integration on the Surface of a Sphere
,”
ZAMM
0044-2267,
66
(
1
), pp.
37
49
.
22.
Carol
,
I.
, and
Bažant
,
Z. P.
, 1997, “
Damage and Plasticity in Microplane Theory
,”
Int. J. Solids Struct.
0020-7683,
34
(
29
), pp.
3807
3835
.
23.
Carol
,
I.
,
Bažant
,
Z. P.
, and
Prat
,
P. C.
, 1991, “
Geometric Damage Tensor Based on Microplane Model
,”
J. Eng. Mech.
0733-9399,
117
(
10
), pp.
2429
2448
.
24.
Brocca
,
M.
, and
Bažant
,
Z. P.
, 2000, “
Microplane Constitutive Model and Metal Plasticity
,”
Appl. Mech. Rev.
0003-6900,
53
(
10
), pp.
265
281
.
25.
Cusatis
,
G.
,
Beghini
,
A.
, and
Bažant
,
Z. P.
, 2008, “
Spectral Stiffness Microplane Model for Quasi-Brittle Composite Laminates—Part I: Theory
,”
ASME J. Appl. Mech.
0021-8936,
75
(
2
), p.
021009
.
26.
Bažant
,
Z. P.
, 2010, “
Can Multiscale-Multiphysics Methods Predict Softening Damage and Structural Failure?
,”
Int. J. Multiscale Comp. Eng.
1543-1649,
8
(
1
), pp.
61
67
.
27.
Bažant
,
Z. P.
, and
Grassl
,
P.
, 2007, “
Size Effect of Cohesive Delamination Fracture Triggered by Sandwich Skin Wrinkling
,”
ASME J. Appl. Mech.
0021-8936,
74
, pp.
1134
1141
.
28.
Ishikawa
,
T.
, and
Chou
,
T. W.
, 1982, “
Elastic Behavior of Woven Hybrid Composites
,”
J. Compos. Mater.
0021-9983,
16
(
1
), pp.
2
19
.
29.
Miravete
,
A.
, 1999,
3-D Textile Reinforcements in Composite Materials
,
Woodhead Publishing Ltd.
,
Cambridge, UK
.
30.
Naik
,
N. K.
, and
Stembekar
,
P. S.
, 1992, “
Elastic Behaviour of Woven Fabric Composites: I—Lamina Analysis
,”
J. Compos. Mater.
0021-9983,
26
, pp.
2196
2225
.
31.
Huang
,
Z. M.
, 2000, “
The Mechanical Properties of Composites Reinforced With Woven and Braided Fabrics
,”
Compos. Sci. Technol.
0266-3538,
60
, pp.
479
498
.
32.
Naik
,
R.
, 1996, “
Analysis of 2D Triaxial and 3D Multi-Interlock Braided Textile Composites
,”
37th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference
.
33.
Cox
,
B. N.
, and
Dadkhah
,
M. S.
, 1995, “
The Macroscopic Elasticity of 3D Woven Composites
,”
J. Compos. Mater.
0021-9983,
29
, pp.
785
819
.
34.
Šmilauer
,
V.
,
Hoover
,
C. G.
,
Bažant
,
Z. P.
,
Caner
,
F. C.
,
Waas
,
A. M.
, and
Shahwan
,
K. W.
, 2009, “
Numerical Simulation of Fracture of Braided Composites via Embedded Representative Unit Cell
,” Northwestern University, Theoretical and Applied Mechanics Report; Engineering Fracture Mechanics 2010, in press.
35.
Song
,
S.
,
Waas
,
A. M.
,
Shahwan
,
K. W.
,
Faruque
,
O.
, and
Xiao
,
X.
, 2008, “
Compression Response of 2D Braided Textile Composites: Single Cell and Multiple Cell Micromechanics Based Strength Predictions
,”
J. Compos. Mater.
0021-9983,
42
(
23
), pp.
2461
2482
.
36.
Bažant
,
Z. P.
, 2002,
Scaling of Structural Strength
,
Hermes Penton Science
,
London
.
37.
Bažant
,
Z. P.
, and
Planas
,
J.
, 1998,
Fracture and Size Effect in Concrete and Other Quasibrittle Materials
,
CRC
,
Boca Raton, FL
.
38.
Bažant
,
Z. P.
, 1984, “
Size Effect in Blunt Fracture: Concrete, Rock, Metal
,”
J. Eng. Mech.
0733-9399,
110
(
4
), pp.
518
535
.
39.
Bažant
,
Z. P.
, 2004, “
Probability Distribution of Energetic-Statistical Size Effect in Quasibrittle Fracture
,”
Probab. Eng. Mech.
0266-8920,
19
(
4
), pp.
307
319
.
40.
Dassault Systèmes, 2007, Dassault Systèmes of America Corp., 6320 Canoga Avenue, Trillium East Tower, Woodlands Hills, CA 91367-2526.
41.
Adley
,
M. D.
,
Frank
,
A. O.
, and
Danielson
,
K. T.
, “
The High-Rate Brittle Microplane Concrete Model: Part I: Bounding Curves and Quasi-Static Fit to Material Property Data
,”
Comput. Concr.
1598-8198, submitted.
42.
Frank
,
A. O.
,
Adley
,
M. D.
,
Danielson
,
K. T.
, and
McDevitt
,
H. S.
, Jr.
, “
The High-Rate Brittle Microplane Concrete Model: Part II: Application to Projectile Perforation of Concrete Slabs
,”
Comput. Concr.
1598-8198, submitted.
43.
Bažant
,
Z. P.
, 2004,
Scaling of Structural Strength
, 2nd ed.,
Elsevier
,
London
.
44.
Bažant
,
Z. P.
,
Daniel
,
I. M.
, and
Li
,
Z.
, 1996, “
Size Effect and Fracture Characteristics of Composite Laminates
,”
ASME J. Eng. Mater. Technol.
0094-4289,
118
(
3
), pp.
317
324
.
45.
Bažant
,
Z. P.
,
Kim
,
J. -J. H.
,
Daniel
,
I. M.
,
Becq-Giraudon
,
E.
, and
Zi
,
G.
, 1999, “
Size Effect on Compression Strength of Fiber Composites Failing by Kink Band Propagation
,”
Int. J. Fract.
0376-9429,
95
, pp.
103
141
.
46.
Bažant
,
Z. P.
,
Zhou
,
Y.
,
Novák
,
D.
, and
Daniel
,
I. M.
, 2004, “
Size Effect on Flexural Strength of Fiber-Composite Laminate
,”
ASME J. Eng. Mater. Technol.
0094-4289,
126
(
1
), pp.
29
37
.
47.
Bažant
,
Z. P.
,
Zhou
,
Y.
,
Daniel
,
I. M.
,
Caner
,
F. C.
, and
Yu
,
Q.
, 2006, “
Size Effect on Strength of Laminate-Foam Sandwich Plates
,”
ASME J. Eng. Mater. Technol.
0094-4289,
128
(
3
), pp.
366
374
.
48.
Bayldon
,
J. M.
,
Bažant
,
Z. P.
,
Daniel
,
I. M.
, and
Yu
,
Q.
, 2006, “
Size Effect on Compressive Strength of Sandwich Panels With Fracture of Woven Laminate Facesheet
,”
ASME J. Eng. Mater. Technol.
0094-4289,
128
, pp.
169
174
.
49.
Waas
,
A. M.
, 2009, private communication.
50.
Bažant
,
Z. P.
, 1990, “
Size Effect Method for Determining Fracture Energy and Process Zone Size of Concrete
,”
Mater. Struct.
1359-5997,
23
, pp.
461
465
.
51.
Červenka
,
J.
,
Bažant
,
Z. P.
, and
Wierer
,
M.
, 2005, “
Equivalent Localization Element for Crack Band Approach to Mesh-Sensitivity in Microplane Model
,”
Int. J. Numer. Methods Eng.
0029-5981,
62
(
5
), pp.
700
726
.
52.
Yu
,
Q.
,
Le
,
J. -L.
,
Hoover
,
C. G.
, and
Bažant
,
Z. P.
, 2010, “
Problems With Hu-Duan Boundary Effect Model and Its Comparison to Size-Shape Effect Law for Quasibrittle Fracture
,”
J. Eng. Mech.
0733-9399,
136
(
1
), pp.
40
50
.
You do not currently have access to this content.