Polynomial classifiers (PC) have already been shown to produce good fatigue life prediction for a specific composite under a variety of fatigue loading conditions. In this study, polynomial classifiers are used to predict the fatigue life in other composite materials not used in training. Different composite materials with a variety of fiber orientation angles are considered. The predictions obtained using PC are compared with the experimental results and are shown to be promising.
1.
El Kadi
, H.
, 2006, “Modeling the Mechanical Behavior of Fiber-Reinforced Polymeric Composite Materials Using Artificial Neural Networks—A Review
,” Compos. Struct.
0263-8223, 73
, pp. 1
–23
.2.
Zhang
, Z.
, and Friedrich
, K.
, 2003, “Artificial Neural Networks Applied to Polymer Composites: A Review
,” Compos. Sci. Technol.
0266-3538, 63
, pp. 2029
–2044
.3.
Al-Assaf
, Y.
, and El Kadi
, H.
, 2007, “Fatigue Life Prediction of Composite Materials Using Polynomial Classifiers and Recurrent Neural Networks
,” Compos. Struct.
0263-8223, 77
, pp. 561
–569
.4.
Hashin
, Z.
, and Rotem
, A.
, 1973, “A Fatigue Failure Criterion for Fiber Reinforced Materials
,” J. Compos. Mater.
0021-9983, 7
, pp. 448
–464
.5.
Awerbuch
, J.
, and Hahn
, H. T.
, 1981, Off-Axis Fatigue of Graphite/Epoxy Composites in Fatigue of Fibrous Composite Materials
, ASTM STP 723, American Society for Testing and Materials
, Philadelphia, PA
, pp. 243
–273
.6.
El Kadi
, H.
, and Ellyin
, F.
, 1994, “Effect of Stress Ratio on the Fatigue of Unidirectional Glass Fibre/Epoxy Composite Laminae
,” Composites
0010-4361, 25
, pp. 917
–924
.7.
Philippidis
, T. P.
, and Vassilopoulos
, A. P.
, 2002, “Complex Stress State Effect on Fatigue Life of GRP Laminates. Part I, Experimental
,” Int. J. Fatigue
0142-1123, 24
, pp. 813
–823
.8.
Kawai
, M.
, and Suda
, H.
, 2004, “Effects of Non-Negative Mean Stress on the Off-Axis Fatigue Behavior of Unidirectional Carbon/Epoxy Composites at Room Temperature
,” J. Compos. Mater.
0021-9983, 38
, pp. 833
–854
.9.
Epaarachchi
, J. A.
, and Clausen
, P. D.
, 2003, “An Empirical Model for Fatigue Behavior Prediction of Glass Fiber-Reinforced Plastic Composites for Various Stress Ratios and Test Frequencies
,” Composites, Part A: Appl. Sci. Manuf.
1359-835X, 34
, pp. 313
–326
.10.
Harris
, B.
, Reiter
, H.
, Adam
, T.
, Dickson
, R. F.
, and Fernando
, G.
, 1990, “Fatigue Behaviour of Carbon Fibre Reinforced Plastics
,” Composites
0010-4361, 21
, pp. 232
–242
.11.
MATLAB
, www.mathworks.comwww.mathworks.com.12.
Al-Assadi
, M.
, 2009, “Predicting the Fatigue Failure of Fiber Reinforced Composite Materials Using Artificial Neural Networks
,” MS thesis, American University of Sharjah, Sharjah, UAE.13.
Abu-Kheil
, Y.
, 2009, “System Identification Using Group Method of Data Handling (GMDH)
,” MS thesis, American University of Sharjah, Sharjah, UAE.Copyright © 2011
by American Society of Mechanical Engineers
You do not currently have access to this content.