A transversely isotropic fiber reinforced elastomer’s hyperelasticity is characterized using a series of constitutive tests (uniaxial tension, uniaxial compression, simple shear, and constrained compression test). A suitable transversely isotropic hyperelastic invariant based strain energy function is proposed and methods for determining the material coefficients are shown. This material model is implemented in a finite element analysis by creating a user subroutine for a commercial finite element code and then used to analyze the material tests. A useful set of constitutive material data for multiple modes of deformation is given. The proposed strain energy function fits the experimental data reasonably well over the strain region of interest. Finite element analysis of the material tests reveals further insight into the materials constitutive nature. The proposed strain energy function is suitable for finite element use by the practicing engineer for small to moderate strains. The necessary material coefficients can be determined from a few simple laboratory tests.

1.
Rogers
,
J. W.
, 1981, “
The Use of Fibers in V-Belt Compounds
,” Rubber World (March), pp.
27
31
.
2.
Treloar
,
L. R. G.
, 1944, “
Stress-Strain Data for Vulcanised Rubber Under Various Types of Deformation
,”
Trans. Faraday Soc.
0014-7672,
40
, pp.
59
70
.
3.
Marckmann
,
G.
, and
Verron
,
E.
, 2006, “
Comparison of Hyperelastic Models for Rubber-Like Materials
,”
Rubber Chem. Technol.
0035-9475,
79
, pp.
835
858
.
4.
Brown
,
R.
, 2006,
Physical Testing of Rubber
,
Springer Science+Media Inc.
,
New York
.
5.
Peeters
,
F. J. H.
, and
Kussner
,
M.
, 1999, “
Material Law Selection in the Finite Element Simulation of Rubber-Like Materials and Its Practical Application in the Industrial Design Process
,”
Constitutive Models for Rubber
,
A.
Dorfmann
and
A.
Muhr
, eds.,
Balkema
,
Rotterdam
, pp.
29
36
.
6.
Finney
,
R. H.
, and
Kumar
,
A.
, 1988, “
Development of Material Constants for Nonlinear Finite-Element Analysis
,”
Rubber Chem. Technol.
0035-9475,
61
, pp.
879
891
.
7.
Charlton
,
D. J.
,
Yang
,
J.
, and
The
,
K. K.
, 1994, “
A Review of Methods to Characterize Rubber Elastic Behavior for Use in Finite Element Analysis
,”
Rubber Chem. Technol.
0035-9475,
67
(
3
), pp.
481
503
.
8.
Kim
,
W. -D.
,
Kim
,
W. -S.
,
Woo
,
C. -S.
, and
Lee
,
H. -J.
, 2004, “
Some Considerations on Mechanical Testing Methods of Rubber Materials Using Nonlinear Finite Element Analysis
,”
Polym. Int.
0959-8103,
53
, pp.
850
856
.
9.
Holzapfel
,
G. A.
, 2005, “
Similarities Between Soft Biological Tissues and Rubberlike Materials
,”
Constitutive Models for Rubber IV
,
P.-E.
Austrell
and
L.
Kari
, eds.,
Taylor & Francis
,
London
, pp.
607
617
.
10.
Krouskop
,
T. A.
,
Wheeler
,
T. M.
,
Kallel
,
F.
,
Garra
,
B. S.
, and
Hall
,
T.
, 1998, “
Elastic Moduli of Breast and Prostate Tissues Under Compression
,”
Ultrason. Imaging
0161-7346,
20
, pp.
260
274
.
11.
Jones
,
R. M.
, 1975,
Mechanics of Composite Materials
,
Scripta Book Company
,
Washington, D.C.
12.
Lee
,
M. C. H.
, 1988, “
The Mechanical Properties and Fractural Morphology of Unidirectional Short-Fiber Reinforced Polychloroprene Composites
,”
J. Polym. Eng.
0334-6447,
8
(
3–4
), pp.
257
282
.
13.
Diani
,
J.
,
Brieu
,
M.
,
Vacherand
,
J. -M.
, and
Rezgui
,
A.
, 2004, “
Directional Model for Isotropic and Anisotropic Hyperelastic Rubber-Like Materials
,”
Mech. Mater.
0167-6636,
36
, pp.
313
321
.
14.
van der Pol
,
J. F.
, 1994, “
Short Para Aramid Fiber Reinforcement
,” Rubber World (June), pp.
32
37
.
15.
Foldi
,
A. P.
, 1987, “
Reinforcement of Rubber Compounds With Short, Individual Fibers
,” Rubber World (May), pp.
19
26
.
16.
Rajeev
,
R. S.
,
Bhowmick
,
A. K.
,
De
,
S. K.
,
Kao
,
G. J. P.
, and
Bandyopadhyay
,
S.
, 2002, “
New Composites Based on Short Melamine Fiber Reinforced EPDM Rubber
,”
Polym. Compos.
0272-8397,
23
(
4
), pp.
574
591
.
17.
Ishikawa
,
S.
,
Tokuda
,
A.
, and
Kotera
,
H.
, 2008, “
Numerical Simulation for Fiber Reinforced Rubber
,”
Journal of Computational Science and Technology
,
2
(
4
), pp.
587
596
.
18.
Mooney
,
M.
, 1940, “
A Theory of Large Elastic Deformation
,”
J. Appl. Phys.
0021-8979,
11
, pp.
582
592
.
19.
Holzapfel
,
G. A.
, 2006,
Nonlinear Solid Mechanics: A Continuum Approach for Engineering
,
Wiley
,
Chichester
.
20.
Peng
,
S. H.
,
Shimbori
,
T.
, and
Naderi
,
A.
, 1994, “
Measurement of Elastomer’s Bulk Modulus by Means of a Confined Compression Test
,”
Rubber Chem. Technol.
0035-9475,
67
, pp.
871
879
.
21.
MARC Analysis Research Corporation
, 1996,
Nonlinear Finite Element Analysis of Elastomers
,
MARC Analysis Research Corporation
,
Palo Alto, CA
.
22.
Ericksen
,
J. L.
, and
Rivlin
,
R. S.
, 1954, “
Large Elastic Deformations of Homogeneous Anisotropic Materials
,”
Journal of Rational Mechanics and Analysis
,
3
, pp.
281
301
.
23.
Spencer
,
A. J. M.
, 1984,
Continuum Theory of the Mechanics of Fiber-Reinforced Composites
,
Springer
,
New York
.
24.
Green
,
A. E.
, and
Adkins
,
J. E.
, 1970,
Large Elastic Deformations
,
Oxford University Press
,
Belfast, UK
.
25.
Moghe
,
S. R.
, 1974, “
Short Fiber Reinforcement of Elastomers
,”
Rubber Chem. Technol.
0035-9475,
47
, pp.
1074
1081
.
26.
Itskov
,
M.
, and
Aksel
,
N.
, 2004, “
A Class of Orthotropic and Transversely Isotropic Hyperelastic Constitutive Models Based on a Polyconvex Strain Energy Function
,”
Int. J. Solids Struct.
0020-7683,
41
, pp.
3833
3848
.
27.
Itskov
,
M.
,
Aksel
,
N.
, and
Ehret
,
A.
, 2003, “
Constitutive Modelling of Calendaring Induced Anisotropy in Rubber Sheets
,”
Constitutive Models for Rubber III
,
J. J. C.
Busfield
and
A. H.
Muhr
, eds.,
Sets & Zeitlinger
,
Lisse, The Netherlands
, pp.
401
404
.
28.
Shariff
,
M. H. B. M.
, 2008, “
Transversely Isotropic Strain Energy With Physical Invariants
,”
Constitutive Models for Rubber V
,
Taylor & Francis
,
London
, pp.
67
72
.
29.
Ogden
,
R. W.
, 1997,
Non-Linear Elastic Deformations
,
Dover
,
Mineola, NY
.
30.
Fung
,
Y. C.
, 1994,
A First Course in Continuum Mechanics for Physical and Biological Engineers and Scientists
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
31.
Gent
,
A. N.
, 1992, “
Elasticity
,”
Engineering With Rubber How to Design Rubber Components
,
A. N.
Gent
, ed.,
Carl Hanser
,
Munich, Germany
, pp.
33
66
.
32.
Peng
,
X. Q.
,
Guo
,
Z. Y.
, and
Moran
,
B.
, 2006, “
An Anisotropic Hyperelastic Constitutive Model With Fiber Matrix Shear Interaction for the Human Annulus Fibrosis
,”
ASME J. Appl. Mech.
0021-8936,
73
, pp.
815
824
.
33.
Weiss
,
J. A.
,
Maker
,
B. N.
, and
Govindjee
,
S.
, 1996, “
Finite Element Implementation of Incompressible, Transversely Isotropic Hyperelasticity
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
135
, pp.
107
128
.
34.
MSC Software
, 2008, MARC, Vol. D, “User Subroutines and Special Routines.”
35.
Qiu
,
G. Y.
, and
Pence
,
T. J.
, 1997, “
Loss of Ellipticity in Plane Deformation of a Simple Directionally Reinforced Incompressible Nonlinearly Elastic Solid
,”
J. Elast.
0374-3535,
49
, pp.
31
63
.
36.
Ishikawa
,
S.
, and
Kotera
,
H.
, 2005, “
Constitutive Equations for Fiber Reinforced Hyperelasticity
,”
Constitutive Models for Rubber IV
,
P.-E.
Austrell
and
L.
Kari
, eds.,
Taylor & Francis
,
London
, pp.
619
625
.
37.
Zhang
,
F.
,
Fan
,
Z.
,
Du
,
X.
, and
Kuang
,
Z.
, 2004, “
Study on Constitutive Model and Failure Criterion of Cord-Rubber Composite
,”
J. Elastomers Plast.
0095-2443,
36
, pp.
351
362
.
38.
Dorfmann
,
A. L.
,
Woods
,
W. A.
, Jr.
, and
Trimmer
,
B. A.
, 2008, “
Muscle Performance in a Soft-Bodied Terrestrial Crawler: Constitutive Modeling of Strain-Rate Dependency
,”
J. R. Soc., Interface
1742-5689,
5
, pp.
349
362
.
39.
Peña
,
E.
, and
Doblaré
,
M.
, 2009, “
An Anisotropic Pseudo-Elastic Approach for Modeling Mullins Effect in Fibrous Biological Materials
,”
Mech. Res. Commun.
0093-6413,
36
, pp.
784
790
.
40.
Horgan
,
C. O.
,
Ogden
,
R. W.
, and
Saccomandi
,
G.
, 2004, “
A Theory of Stress Softening of Elastomers Based on Finite Chain Extensibility
,”
Proc. R. Soc. London, Ser. A
0950-1207,
460
, pp.
1737
1754
.
You do not currently have access to this content.