Various methods for the production of bulk nanostructured (NS)/ultrafine-grained (UFG) materials have been developed, including equal channel angular extrusion (ECAE), a form of severe plastic deformation. Using an ECAE NS/UFG copper bar as an example, this study has investigated machining-induced workpiece microstructure variation using X-ray diffraction. It has been found that (1) under gentle cutting conditions, there was a 10% increase in the median grain size compared with unmachined ECAE NS/UFG copper bars. Increases in the arithmetic-, area-, and volume-weighted grain sizes were found to be 10%, 8%, and 8%, respectively, and (2) an average 27% drop in the dislocation density was observed between the machined and unmachined ECAE copper bars. The dislocation density was shown to have the most reduction (39%) at the outer radius of the machined ECAE bar where more heat and/or higher pressure were experienced.

1.
Baro
,
M. D.
,
Kolobov
,
Y. R.
,
Ovidko
,
I. A.
,
Schaefer
,
H. E.
,
Straumal
,
B. B.
,
Valiev
,
R. Z.
,
Alexandrov
,
I. V.
,
Ivanov
,
M.
,
Reimann
,
K.
,
Reizis
,
A. B.
,
Surinach
,
S.
, and
Zhilyaev
,
A. P.
, 2001, “
Diffusion and Related Phenomena in Bulk Nanostructured Materials
,”
Rev. Adv. Mater. Sci.
1606-5131,
2
, pp.
1
43
.
2.
Lowe
,
T.
, 2006, “
Metals and Alloys Nanostructured by Severe Plastic Deformation: Commercialization Pathways
,”
JOM
1047-4838,
58
(
4
), pp.
28
32
.
3.
Valiev
,
R. Z.
,
Islamgaliev
,
R. K.
, and
Alexandrov
,
I. V.
, 2000, “
Bulk Nanostructured Materials From Severe Plastic Deformation
,”
Prog. Mater. Sci.
0079-6425,
45
, pp.
103
189
.
4.
Fukuda
,
Y.
,
Oh-ishi
,
K.
,
Horita
,
Z.
, and
Langdon
,
T. G.
, 2002, “
Processing of a Low-Carbon Steel by Equal-Channel Angular Pressing
,”
Acta Mater.
1359-6454,
50
, pp.
1359
1368
.
5.
Haouaoui
,
M.
,
Karaman
,
I.
,
Maier
,
H. J.
, and
Hatwig
,
K. T.
, 2004, “
Microstructure Evolution and Mechanical Behavior of Bulk Copper Obtained by Consolidation of Micro- and Nanopowders Using Equal Channel Angular Extrusion
,”
Metall. Mater. Trans. A
1073-5623,
35
, pp.
2935
2949
.
6.
Furukawa
,
M.
,
Horita
,
Z.
,
Nemoto
,
M.
, and
Langdon
,
T. G.
, 2001, “
Review Processing of Metals by Equal-Channel Angular Pressing
,”
J. Mater. Sci.
0022-2461,
36
, pp.
2835
2843
.
7.
Morehead
,
M.
,
Huang
,
Y.
,
Zhu
,
Y. T.
,
Lowe
,
T. C.
, and
Valiev
,
R. Z.
, 2006, “
Experimental Investigation of the Machinability of Equal Channel Angular Pressing Processed Commercially Pure Titanium
,”
Trans. NAMRI/SME
1047-3025,
34
, pp.
539
546
.
8.
Morehead
,
M.
,
Huang
,
Y.
, and
Hartwig
,
K. T.
, 2007, “
Machinability of Ultrafine-Grained Copper Using Tungsten Carbide and Polycrystalline Diamond Tools
,”
Int. J. Mach. Tools Manuf.
0890-6955,
47
(
2
), pp.
286
293
.
9.
Valiev
,
R. Z.
, 1997, “
Structure and Mechanical Properties of Ultrafine-Grained Metals
,”
Mater. Sci. Eng., A
0921-5093,
234–236
, pp.
59
66
.
10.
2004, Kennametal Lathe Tooling, Catalog 1010, Latrobe, PA.
11.
Ungár
,
T.
,
Gubicza
,
J.
,
Ribarik
,
G.
, and
Borbely
,
A.
, 2001, “
Crystallite Size Distribution and Dislocation Structure Determined by Diffraction Profile Analysis: Principles and Practical Application to Cubic and Hexagonal Crystals
,”
J. Appl. Crystallogr.
0021-8898,
34
, pp.
298
310
.
12.
Gubicza
,
J.
,
Balogh
,
L.
,
Hellmig
,
R. J.
,
Estrin
,
Y.
, and
Ungar
,
T.
, 2005, “
Dislocation Structure and Crystallite Size in Severely Deformed Copper by X-Ray Peak Profile Analysis
,”
Mater. Sci. Eng., A
0921-5093,
400–401
, pp.
334
338
.
13.
Ungár
,
T.
, 2003, “
The Meaning of Size Obtained From Broadened X-Ray Diffraction Peaks
,”
Adv. Eng. Mater.
1438-1656,
5
, pp.
323
329
.
14.
Warren
,
B. E.
, and
Averbach
,
B. L.
, 1950, “
The Effect of Cold-Work Distortion on X-Ray Patterns
,”
J. Appl. Phys.
0021-8979,
21
, pp.
595
599
.
15.
Williamson
,
G. K.
, and
Hall
,
W. H.
, 1953, “
X-Ray Line Broadening From Filled Aluminum and Wolfram
,”
Acta Metall.
0001-6160,
1
, pp.
22
31
.
16.
Gubicza
,
J.
,
Ribarik
,
G.
,
Goren-Munginstein
,
G. R.
,
Rosen
,
A. R.
, and
Ungar
,
T.
, 2001, “
The Density and the Character of Dislocations in Cubic and Hexagonal Polycrystals Determined by X-Ray Diffraction
,”
Mater. Sci. Eng., A
0921-5093,
309–310
, pp.
60
63
.
17.
Gubicza
,
J.
,
Dragomir
,
I. C.
,
Ribarik
,
G.
,
Zhu
,
Y. T.
,
Valiev
,
R.
, and
Ungar
,
T.
, 2003, “
Characterizations of the Microstructure of Severely Deformed Titanium by X-Ray Diffraction Profile Analysis
,”
Mater. Sci. Forum
0255-5476,
414–415
, pp.
229
234
.
18.
Scardi
,
P.
,
Leoni
,
M.
, and
Delhez
,
R.
, 2004, “
Line Broadening Analysis Using Integral Breadth Methods: A Critical Review
,”
J. Appl. Crystallogr.
0021-8898,
37
, pp.
381
390
.
19.
Ribárik
,
G.
,
Ungár
,
T.
, and
Gubicza
,
J.
, 2001, “
MWP-Fit: A Program for Multiple Whole-Profile Fitting of Diffraction Peak Profiles by Ab Initio Theoretical Functions
,”
J. Appl. Crystallogr.
0021-8898,
34
, pp.
669
676
.
20.
Kril
,
C. E.
, and
Birringer
,
R.
, 1998, “
Estimating Grain-Size Distributions in Nanocrystalline Materials From X-Ray Diffraction Profile Analysis
,”
Philos. Mag. A
0141-8610,
77
, pp.
621
640
.
21.
Ungar
,
T.
,
Borbely
,
A.
,
Goren-Muginstein
,
G. R.
,
Berger
,
S.
, and
Rosen
,
A. R.
, 1999, “
Particle-Size, Size Distribution and Dislocations in Nanocrystalline Tungsten-Carbide
,”
Nanostructured Materials
,
11
, pp.
103
113
.
22.
Gubicza
,
J.
,
Szepvolgyi
,
J.
,
Mohai
,
I.
,
Zsoldos
,
L.
, and
Ungar
,
T.
, 2000, “
Particle Size Distribution and Dislocation Density Determined by High Resolution X-Ray Diffraction in Nanocrystalline Silicon Nitride Powders
,”
Mater. Sci. Eng., A
0921-5093,
280
, pp.
263
269
.
23.
Gubicza
,
J.
,
Nam
,
N. H.
,
Balogh
,
L.
,
Hellmig
,
R. J.
,
Stolyarov
,
V. V.
,
Estrin
,
Y.
, and
Ungar
,
T.
, 2004, “
Microstructure of Severely Deformed Metals Determined by X-Ray Peak Profile Analysis
,”
J. Alloys Compd.
0925-8388,
378
, pp.
248
252
.
24.
Hinds
,
W. C.
, 1982,
Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles
,
Wiley
,
New York
.
25.
Ungar
,
T.
, 2004, “
Microstructural Parameters From X-Ray Diffraction Peak Broadening
,”
Scr. Mater.
1359-6462,
51
, pp.
777
781
.
26.
Zhu
,
Y. T.
,
Huang
,
J. Y.
,
Gubicza
,
J.
,
Ungar
,
T.
,
Wang
,
Y. M.
,
Ma
,
E.
, and
Valiev
,
R. Z.
, 2003, “
Nanostructures in Ti Processed by Severe Plastic Deformation
,”
J. Mater. Res.
0884-2914,
18
, pp.
1908
1917
.
You do not currently have access to this content.