To analyze the formation of multiple shear bands in HY-100 steel, we consider an infinitely extended layer of finite thickness subjected to shear loading. The perturbation approach, associated with numerical methods, is used to determine the instability modes. The criteria of Wright–Ockendon and Molinari are used to determine the shear band spacing. The hypothesis consisting in considering the proportion of plastic work dissipated as heat (quantified by the Taylor–Quinney coefficient β) as independent of the loading path is now recognized as highly simplistic. The present study attempts to provide a systematic approach to the inelastic heat fraction evolution for a general loading within the framework of thermoviscoplastic standard modeling, including a number of material parameters as strain hardening, strain rate sensitivity, and thermal softening. The effect of each material parameter on the shear band spacing is determined by using a power law constitutive relation. The Johnson–Cook and power law models are used to illustrate the influence of the constitutive relation on the results for the adiabatic shear band spacing by studying the response of HY-100 steel. We have compared our results with available experimental results in the literature over a very wide range of strain rates (103105s1). In this study, we show that the variation in the Taylor–Quinney parameter β(γ) as a function of shear strain is an important parameter that plays a significant role in the calculation of the shear band spacing.

1.
Tresca
,
H.
, 1878, “
On Further Application of the Flow of Solids
,”
Proc. Inst. Mech. Eng.
0020-3483,
29
, pp.
301
345
.
2.
Taylor
,
G. I.
, and
Quinney
,
H.
, 1934, “
The Latent Energy Remaining in a Metal After Cold Working
,”
Proc. R. Soc. London
0370-1662,
143
, pp.
307
326
.
3.
Chrysochoos
,
A.
, and
Belmahjoub
,
F.
, 1992, “
Thermographic Analysis of Thermo-Mechanical Couplings
,”
Arch. Mech.
0373-2029,
44
, pp.
55
68
.
4.
Mason
,
J. J.
,
Rosakis
,
A. J.
, and
Ravichandran
,
G.
, 1994, “
On the Strain and Strain Rate Dependence of the Fraction of Plastic Work Converted to Heat: An Experimental Study Using High Speed Infrared Detectors and Kolsky Bar
,”
Mech. Mater.
0167-6636,
17
, pp.
135
145
.
5.
Zener
,
C.
, and
Hollomon
,
J. H.
, 1944, “
Effect of Strain Rate Upon Plastic Flow of Steel
,”
J. Appl. Phys.
0021-8979,
15
, pp.
22
32
.
6.
Armstrong
,
R.
,
Batra
,
R. C.
,
Meyers
,
M.
, and
Wright
,
T. W.
, 1994, “
Shear Instabilities and Viscoplasticity Theories
,” Special issue of
Mechanics of Materials
0167-6636,
17
, pp.
83
328
.
7.
Batra
,
R. C.
, and
Zbib
,
H. M.
, 1994,
Material Instabilities: Theory and Applications
,
ASME
,
New York
.
8.
Bai
,
Y. L.
, and
Dodd
,
B.
, 1992,
Adiabatic Shear Localization: Occurrence, Theories, and Applications
,
Pergamon
,
New York
.
9.
Wright
,
T. W.
, 2002,
The Physics and Mathematics of Adiabatic Shear Bands
,
Cambridge University Press
,
Cambridge, England
.
10.
Grady
,
D. E.
, and
Kipp
,
M. E.
, 1987, “
The Growth of Unstable Thermoplastic Shear With Application to Steady-Wave Shock Compression in Solids
,”
J. Mech. Phys. Solids
0022-5096,
35
, pp.
95
119
.
11.
Grady
,
D. E.
, 1992, “
Properties of an Adiabatic Shear-Band Process Zone
,”
J. Mech. Phys. Solids
0022-5096,
40
(
6
), pp.
1197
1215
.
12.
Wright
,
T. W.
, and
Ockendon
,
H.
, 1996, “
A Scaling Law for the Effect of Inertia on the Formation of Adiabatic Shear Bands
,”
Int. J. Plast.
0749-6419,
12
, pp.
927
934
.
13.
Molinari
,
A.
, 1997, “
Collective Behavior and Spacing of Adiabatic Shear Bands
,”
J. Mech. Phys. Solids
0022-5096,
45
, pp.
1551
1575
.
14.
Batra
,
R. C.
, and
Chen
,
L.
, 1999, “
Shear Band Spacing in Gradient-Dependent Thermoviscoplastic Materials
,”
Comput. Mech.
0178-7675,
23
, pp.
8
19
.
15.
Batra
,
R. C.
, and
Chen
,
L.
, 2001, “
Effect of Viscoplastic Relations on the Instability Strain, Shear Band Initiation Strain, the Strain Corresponding to the Maximum Shear Band Spacing, and the Band Width in a Thermoviscoplastic Material
,”
Int. J. Plast.
0749-6419,
17
, pp.
1465
1489
.
16.
Chen
,
L.
, and
Batra
,
R. C.
, 1999, “
Effect of Material Parameters on Shear Band Spacing in Work Hardening Gradient Dependent Thermoviscoplastic Materials
,”
Int. J. Plast.
0749-6419,
15
, pp.
551
574
.
17.
Daridon
,
L.
,
Oussouaddi
,
O.
, and
Ahzi
,
S.
, 2004, “
Influence of the Material Constitutive Models on the Adiabatic Shear Band Spacing: MTS, Power Law and Johnson–Cook Models
,”
Int. J. Solids Struct.
0020-7683,
41
, pp.
3109
3124
.
18.
Batra
,
R. C.
, and
Wei
,
Z. G.
, 2006, “
Shear Band Spacing in Thermoviscoplastic Materials
,”
Int. J. Impact Eng.
0734-743X,
32
, pp.
947
967
.
19.
Lapovok
,
R.
,
Toth
,
L. S.
,
Molinari
,
A.
, and
Estrin
,
Y.
, 2009, “
Strain Localization Patterns Under Equal-Channel Angular Pressing
,”
J. Mech. Phys. Solids
0022-5096,
57
, pp.
122
136
.
20.
Johnson
,
G. R.
, and
Cook
,
W. H.
, 1983, “
A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain-Rates, and High Temperatures
,”
Proceedings of the Seventh International Symposium on Ballistics
, pp.
541
547
.
21.
Molinari
,
A.
, 1985, “
Instabilité thermoviscoplastique en cisaillement simple
,”
J. Mec. Theor. Appl.
0750-7240,
4
, pp.
659
684
.
22.
Molinari
,
A.
, and
Clifton
,
R.
, 1983, “
Localisation de la déformation viscoplastique en cisaillement simple: résultats exacts en théorie non linéaire
,”
C. R. Acad. Sci., Ser. II
0750-7623,
296
, pp.
1
4
.
23.
Nesterenko
,
V. F.
,
Meyers
,
M. A.
, and
Wright
,
T. W.
, 1995, “
Collective Behavior of Shear Bands
,”
Metallurgical and Materials Application of Shock-Wave and High-Strain-Rate Phenomena
,
L. E.
Murr
,
K. P.
Staudhammer
, and
M. A.
Meyers
, eds.,
Elsevier
,
Amsterdam
, pp.
397
404
.
You do not currently have access to this content.