New developments in high temperature ceramic materials technology have focused on obtaining nanocomposite materials with nanoscale features for an optimal control of thermal and mechanical properties. One example is the silicon carbide (SiC)–silicon nitride (Si3N4) nanocomposites with nanosized SiC particles placed either in microsized Si3N4 grains or along Si3N4 grain boundaries (GBs). This work focuses on analyzing the influence of GBs, interfaces, and impurities on thermal and mechanical properties of a set of SiCSi3N4 nanocomposites at three different temperatures (300 K, 900 K, and 1500 K). Nanocomposite thermal conductivity values predicted in this study are smaller in comparison to the bulk Si3N4 values (30W/mK). Even with the volume fraction of SiC phase being limited to maximum 40%, it is shown that the thermal conductivity values could be reduced to less than those of the bulk SiC phase (3W/mK) by microstructural feature arrangement. Nanocomposite phonon spectral density values show a short rage structural order indicating a high degree of diffused phonon reflection. Visual analyses of the atomistic arrangements did not reveal any loss of crystallinity in the nanocomposites at high temperatures. This indicates that structural arrangement, not the phase change, is a factor controlling thermal conduction as a function of temperature. The nanocomposite deformation mechanism is a trade-off between the stress concentration caused by SiC particles and Si3N4Si3N4 GB sliding. The temperature increase tends to work in favor of GB sliding leading to softening of structures. However, microstructural strength increases with increase in temperature when GBs are absent. GBs also contribute to reduction in thermal conductivity as well as increase in fracture strength. Replacement of sharp GBs by diffused GBs having C/N impurities, lowered thermal conductivity, and increased fracture strength. Decrease in SiCSi3N4 interfaces by removal of SiC particles tends to favor an increase in thermal conductivity as well as fracture resistance. Overall, it is shown that for high temperature mechanical strength improvement, judicious placement of SiC particles and optimal control of GB atomic volume fraction are the main controlling factors.

1.
Ajayan
,
P. M.
,
Schadler
,
L. S.
, and
Braun
,
P. V.
, 2003,
Nanocomposite Science and Technology
,
1st ed.
,
Wiley-VCH
,
New York
.
2.
Cherkaoui
,
M.
, and
Capolungo
,
L.
, 2009,
Atomistic and Continuum Modeling of Nanocrystalline Materials
,
Springer
,
Berlin
.
3.
Nan
,
C. -W.
, and
Birringer
,
R.
, 1998, “
Determining the Kapitza Resistance and the Thermal Conductivity of Polycrystals: A Simple Model
,”
Phys. Rev. B
0556-2805,
57
(
14
), pp.
8264
8268
.
4.
Ward
,
D. K.
,
Curtin
,
W. A.
, and
Yue
,
Q.
, 2006, “
Mechanical Behavior of Aluminum-Silicon Nanocomposites: A Molecular Dynamics Study
,”
Acta Mater.
1359-6454,
54
(
17
), pp.
4441
4451
.
5.
Song
,
M.
, and
Chen
,
L.
, 2006, “
Molecular Dynamics Simulation of the Fracture in Polymer-Exfoliated Layered Silicate Nanocomposites
,”
Macromol. Theory Simul.
1022-1344,
15
(
3
), pp.
238
245
.
6.
Tomar
,
V.
, and
Zhou
,
M.
, 2007, “
Analyses of Tensile Deformation of Nanocrystalline α-Fe2O3+fcc-Al Composites Using Classical Molecular Dynamics
,”
J. Mech. Phys. Solids
0022-5096,
55
, pp.
1053
1085
.
7.
Zeng
,
Q. H.
,
Yu
,
A. B.
, and
Lu
,
G. Q.
, 2008, “
Molecular Dynamics Simulations of Organoclays and Polymer Nanocomposites
,”
Int. J. Nanotechnol.
1475-7435,
5
(
2/3
), pp.
277
290
.
8.
Tomar
,
V.
, 2008, “
Analyses of the Role of Grain Boundaries in Mesoscale Dynamic Fracture Resistance of SiC–Si3N4 Intergranular Nanocomposites
,”
Eng. Fract. Mech.
0013-7944,
75
, pp.
4501
4512
.
9.
Tomar
,
V.
, 2008, “
Analyses of the Role of the Second Phase SiC Particles in Microstructure Dependent Fracture Resistance Variation of SiC–Si3N4 Nanocomposites
,”
Modell. Simul. Mater. Sci. Eng.
0965-0393,
16
, p.
035001
.
10.
Tomar
,
V.
, and
Samvedi
,
V.
, 2009, “
Atomistic Simulations Based Understanding of the Mechanism Behind the Role of Second Phase SiC Particles in Fracture Resistance of SiC–Si3N4 Nanocomposites
,”
Int. J. Multiscale Comp. Eng.
1543-1649,
7
(
4
), pp.
277
294
.
11.
Tomar
,
V.
,
Gan
,
M.
, and
Kim
,
H. S.
, 2010, “
Atomistic Analyses of the Effect of Temperature and Morphology on Mechanical Strength of Si–C–N and Si–C–O Nanocomposites
,”
J. Eur. Ceram. Soc.
0955-2219,
30
, pp.
2223
2237
.
12.
Tomar
,
V.
,
Samvedi
,
V.
, and
Kim
,
H.
, 2010, “
Atomistic Understanding of the Particle Clustering and Particle Size Effect on the Room Temperature Strength of SiC–Si3N4 Nanocomposites
,”
Int. J. Multiscale Comp. Eng.
1543-1649,
8
(
5
), in press.
13.
Tomar
,
V.
, and
Gan
,
M.
, 2010, “
Temperature Dependent Nanomechanics of Si–C–N Nanocomposites With an Account of Particle Clustering and Grain Boundaries
,”
Int. J. Hydrogen Energy
0360-3199, in press.
14.
Kitagawa
,
H.
,
Shibutani
,
Y.
, and
Ogata
,
S.
, 1995, “
Ab-Initio Simulation of Thermal Properties of AIN Ceramics
,”
Modell. Simul. Mater. Sci. Eng.
0965-0393,
3
, pp.
521
531
.
15.
Hirosaki
,
N.
,
Ogata
,
S.
,
Kocer
,
C.
,
Kitagawa
,
H.
, and
Nakamura
,
Y.
, 2002, “
Molecular Dynamics Calculation of the Ideal Thermal Conductivity of Single-Crystal α-and β-Si3N4
,”
Phys. Rev. B
0556-2805,
65
, p.
134110
.
16.
Costescu
,
R. M.
,
Wall
,
M. A.
, and
Cahill
,
D. G.
, 2003, “
Thermal Conductance of Epitaxial Interfaces
,”
Phys. Rev. B
0556-2805,
67
, p.
054302
.
17.
Schelling
,
P. K.
, and
Phillpot
,
S. R.
, 2001, “
Mechanism of Thermal Transport in Zirconia and Yittria-Stabilized Zirconia by Molecular-Dynamics Simulations
,”
J. Am. Ceram. Soc.
0002-7820,
84
(
12
), pp.
2997
3007
.
18.
Yoon
,
Y. -G.
,
Car
,
R.
,
Srolovitz
,
D. J.
, and
Scandolo
,
S.
, 2004, “
Thermal Conductivity of Crystalline Quartz From Classical Simulations
,”
Phys. Rev. B
0556-2805,
70
, p.
012302
.
19.
Samvedi
,
V.
, and
Tomar
,
V.
, 2009, “
Role of Heat Flow Direction, Monolayer Film Thickness, and Periodicity in Controlling Thermal Conductivity of a Si–Ge Superlattice System
,”
J. Appl. Phys.
0021-8979,
105
, p.
013541
.
20.
Samvedi
,
V.
, and
Tomar
,
V.
, 2009, “
Analyses of Interface Thermal Boundary Resistance of Si–Ge Superlattice System as a Function of Film Thickness and Periodicity
,”
Nanotechnology
0957-4484,
20
, p.
365701
.
21.
Samvedi
,
V.
, and
Tomar
,
V.
, 2010, “
Role of Straining and Morphology in Thermal Conductivity of a Set of Si–Ge Superlattices and Biomimetic Si–Ge Nanocomposites
,”
J. Phys. D
0022-3727,
43
(
2010
), p.
135401
.
22.
Bill
,
J.
,
Kamphowe
,
T. W.
,
Müeller
,
A.
,
Wichmann
,
T.
,
Zern
,
A.
,
Jalowieki
,
A.
,
Mayer
,
J.
,
Weinmann
,
M.
,
Schuhmacher
,
J.
,
Müeller
,
K.
,
Peng
,
J.
,
Seifert
,
H. J.
, and
Aldinger
,
F.
, 2001, “
Precursor-Derived Si–(B–)C–N Ceramics: Thermolysis, Amorphous State, and Crystallization
,”
Appl. Organomet. Chem.
0268-2605,
15
(
10
), pp.
777
793
.
23.
Jalowiecki
,
A.
,
Bill
,
J.
,
Aldinger
,
F.
, and
Mayer
,
J.
, 1996, “
Interface Characterization of Nanosized B-Doped Si3N4/SiC Ceramics
,”
Composites, Part A
1359-835X,
27
, pp.
717
721
.
24.
Smith
,
W.
,
Yong
,
C. W.
, and
Rodger
,
P. M.
, 2002, “
DL_POLY: Application to Molecular Simulation
,”
Mol. Simul.
0892-7022,
28
(
5
), pp.
385
471
.
25.
Melchionna
,
S.
,
Ciccotti
,
G.
, and
Holian
,
B. L.
, 1993, “
Hoover NPT Dynamics for Systems Varying in Shape and Size
,”
Mol. Phys.
0026-8976,
78
(
3
), pp.
533
544
.
26.
Schelling
,
P. K.
,
Phillpot
,
S. R.
, and
Keblinski
,
P.
, 2002, “
Comparison of Atomic-Level Simulation Methods for Computing Thermal Conductivity
,”
Phys. Rev. B
0556-2805,
65
(
144306
), pp.
1
12
.
27.
Huang
,
Z.
, and
Tang
,
Z.
, 2006, “
Evaluation of Momentum Conservation Influence in Non-Equilibrium Molecular Dynamics Methods to Compute Thermal Conductivity
,”
Physica B
0921-4526,
373
, pp.
291
296
.
28.
Kroll
,
P. M.
, 1996, “
Computer Simulations and X-Ray Absorption Near Edge Structure of Silicon Nitride and Silicon Carbonitride
,” Ph.D. thesis, Technische Hochschule Darmstadt, Darmstadt, Germany.
29.
Matsunaga
,
K.
, and
Iwamoto
,
Y.
, 2001, “
Molecular Dynamics Study of Atomic Structure and Diffusion Behavior in Amorphous Silicon Nitride Containing Boron
,”
J. Am. Ceram. Soc.
0002-7820,
84
(
10
), pp.
2213
2219
.
30.
Rouxel
,
T.
,
Sangleboeuf
,
J. -C.
,
Huger
,
M.
,
Gault
,
C.
,
Besson
,
J. -L.
, and
Testu
,
S.
, 2002, “
Temperature Dependence of Young’s Modulus in Si3N4 Based Ceramics: Roles of Sintering Additives and of SiC Particle Content
,”
Acta Mater.
1359-6454,
50
(
7
), pp.
1669
1682
.
31.
Matsunaga
,
K.
,
Fisher
,
C.
, and
Matsubara
,
H.
, 2000, “
Tersoff Potential Parameters for Simulating Cubic Boron Carbonitrides
,”
Jpn. J. Appl. Phys., Part 2
0021-4922,
39
, pp.
L48
L51
.
32.
Abramson
,
A. R.
,
Tien
,
C. -L.
, and
Majumdar
,
A.
, 2002, “
Interface and Strain Effects on the Thermal Conductivity of Heterostructures: A Molecular Dynamics Study
,”
ASME J. Heat Transfer
0022-1481,
124
, pp.
963
970
.
33.
Bhowmick
,
S.
, and
Shenoy
,
V. B.
, 2006, “
Effect of Strain on the Thermal Conductivity of Solids
,”
J. Chem. Phys.
0021-9606,
125
, p.
164513
.
You do not currently have access to this content.