In this paper, the conceptual, experimental, and computational challenges associated with virtual testing have been discussed and recent advances that address these challenges have been summarized. The promising capability of augmented finite element method based numerical platform for carry out structural level, subply scale, and microscopic single-fiber level analyses with explicit consideration of arbitrary cracking has been demonstrated through a hierarchical simulation-based analysis of a double-notched tension test reported in the literature. The simulation can account for the nonlinear coupling among all major damage modes relevant at different scales. Thus, it offers a complete picture of how microdamage processes interact with each other to eventually form a catastrophic major crack responsible for structural failure. In the exercise of virtual testing, such information is key to guide the design of discovery experiments to inform and calibrate models of the evolution processes. Urgent questions derived from this exercise are: How can we assure that damage models address all important mechanisms, how can we calibrate the material properties embedded in the models, and what constitutes sufficient validation of model predictions? The virtual test definition must include real tests that are designed in such a way as to be rich in the information needed to inform models and must also include model-based analyses of the tests that are required to acquire the information. Model-based analysis of tests must be undertaken and information-rich tests must be defined, taking proper account of the limitations of experimental methods and the stochastic nature of sublaminar and microscopic phenomena.

1.
McCartney
,
L. N.
, 2003, “
Physically Based Damage Models for Laminated Composites
,”
Proc. Inst. Mech. Eng., Part L
1464-4207,
217
, pp.
163
199
.
2.
Chang
,
K. Y.
,
Liu
,
S.
, and
Chang
,
F. K.
, 1991, “
Damage Tolerance of Laminated Composites Containing an Open Hole and Subjected to Tensile Loadings
,”
J. Compos. Mater.
0021-9983,
25
, pp.
274
301
.
3.
Shokrieh
,
M. M.
, and
Lessard
,
L. B.
, 2000, “
Progressive Fatigue Damage Modeling of Composite Materials, Part I: Modeling
,”
J. Compos. Mater.
0021-9983,
34
, pp.
1056
1080
.
4.
Chaboche
,
J. L.
,
Lesne
,
P. M.
, and
Maire
,
J. F.
, 1995, “
Continuum Damage Mechanics, Anisotropy and Damage Deactivation for Brittle Materials Like Concrete and Ceramic Composites
,”
Int. J. Damage Mech.
1056-7895,
4
, pp.
5
22
.
5.
Cox
,
B. N.
, and
Yang
,
Q. D.
, 2006, “
In Quest of Virtual Tests for Structural Composites
,”
Science
0036-8075,
314
, pp.
1102
1107
.
6.
Hallett
,
S. R.
, and
Wisnom
,
M. R.
, 2006, “
Numerical Investigation of Progressive Damage and the Effect of Layup in Notched Tensile Tests
,”
J. Compos. Mater.
0021-9983,
40
, pp.
1229
1245
.
7.
Belytschko
,
T.
, and
Black
,
T.
, 1999, “
Elastic Crack Growth in Finite Elements With Minimal Reading
,”
Int. J. Numer. Methods Eng.
0029-5981,
45
, pp.
601
620
.
8.
de Borst
,
R.
,
Remmers
,
J. J. C.
, and
Needleman
,
A.
, 2006, “
Mesh-Independent Discrete Numerical Representations of Cohesive-Zone Models
,”
Eng. Fract. Mech.
0013-7944,
73
, pp.
160
177
.
9.
Ling
,
D. S.
,
Yang
,
Q. D.
, and
Cox
,
B. N.
, 2009, “
An Augmented Finite Element Method for Modeling Arbitrary Discontinuities in Composite Materials
,”
Int. J. Fract.
0376-9429,
156
, pp.
53
73
.
10.
Moffat
,
A. J.
,
Wright
,
P.
,
Buffiere
,
J. Y.
,
Sinclair
,
I.
, and
Spearing
,
S. M.
, 2008, “
Micromechanisms of Damage in 0° Splits in a [90/0]s Composite Material Using Synchrotron Radiation Computed Tomography
,”
Scr. Mater.
1359-6462,
59
, pp.
1043
1046
.
11.
Wright
,
P.
,
Fu
,
X.
,
Sinclair
,
I.
, and
Spearing
,
S. M.
, 2008, “
Ultra High Resolution Computed Tomography of Damage in Notched Carbon Fiber—Epoxy Composites
,”
J. Compos. Mater.
0021-9983,
42
, pp.
1993
2002
.
12.
Fang
,
X. J.
,
Zhou
,
Z. Q.
,
Cox
,
B. N.
, and
Yang
,
Q. D.
, “
High-Fidelity Simulations of Multiple Fracture Processes in a Laminated Composites in Tension
,”
J. Mech. Phys. Solids
0022-5096, submitted.
13.
Moës
,
N.
,
Dolbow
,
J.
, and
Belytschko
,
T.
, 1999, “
A Finite Element Method for Crack Growth Without Remeshing
,”
Int. J. Numer. Methods Eng.
0029-5981,
46
, pp.
131
150
.
14.
Cox
,
B. N.
,
Spearing
,
S. M.
, and
Mumm
,
D. R.
, 2008,
Mechanical Response of Composites
,
P. P.
Camanho
,
C. G.
Dávila
,
S. T.
Pinho
, and
J. J. C.
Remmers
, eds.,
Springer Science and Business Media
,
Dordrecht, The Netherlands
, pp.
57
75
.
15.
Zhou
,
Z. Q.
,
Fang
,
X. J.
,
Cox
,
B. N.
, and
Yang
,
Q. D.
, 2010, “
The Evolution of a Transverse Intra-Ply Crack Coupled to Delamination Cracks
,”
Int. J. Fract.
0376-9429,
165
, pp.
77
92
.
16.
Dvorak
,
G. J.
, and
Laws
,
N.
, 1987, “
Analysis of Progressive Matrix Cracking in Composite Laminates II. First Ply Failure
,”
J. Compos. Mater.
0021-9983,
21
, pp.
309
329
.
17.
Ho
,
S.
, and
Suo
,
Z.
, 1992, “
Microcracks Tunneling in Brittle Matrix Composites Driven by Thermal Expansion Mismatch
,”
Acta Metall. Mater.
0956-7151,
40
, pp.
1685
1690
.
18.
Cox
,
B. N.
, and
Marshall
,
D. B.
, 1996, “
Crack Initiation in Fiber-Reinforced Brittle Laminates
,”
J. Am. Ceram. Soc.
0002-7820,
79
, pp.
1181
1188
.
19.
Zhou
,
Z. Q.
, 2010, “
High-Fidelity Simulations of Multiple Fracture Processes in a Laminated Composites in Tension
,” Ph.D. thesis, University of Miami, Coral Gables, FL.
You do not currently have access to this content.