The present study reports a unique tensile response of pure aluminum triggered due to the presence of SiC particles at nanolength scale. Al/SiC nanocomposites were synthesized by using energy efficient microwave assisted powder metallurgy route. Characterization studies conducted on the extruded samples revealed that the increasing presence of SiC particles at nanolength scale did not affect the 0.2% yield strength but increased ultimate tensile strength and work of fracture. Most interestingly, the presence of SiC nanoparticles increased the uniform, nonuniform, and total strain of aluminum when compared with pure aluminum. An attempt has been made in this study to inter-relate the enhanced tensile response of aluminum with the ability of SiC nanoparticles to homogenize the slip process and to delay void initiation and coalescence during tensile loading.

1.
Ayyar
,
A.
,
Crawford
,
G. A.
,
Williams
,
J. J.
, and
Chawla
,
N.
, 2008, “
Numerical Simulation of the Effect of Particle Spatial Distribution and Strength on Tensile Behavior of Particle Reinforced Composites
,”
Comput. Mater. Sci.
0927-0256,
44
(
2
),
496
506
.
2.
CHENG
,
N. -P.
,
ZENG
,
S. -M.
,
YU
,
W. -B.
,
LIU
,
Z. -Y.
, and
CHEN
,
Z. -Q.
, 2007, “
Deformation Behavior of SiC Particle Reinforced Al Matrix Composites Based on EMA Model
,”
Trans. Nonferrous Met. Soc. China
1003-6326,
17
, pp.
51
57
.
3.
Cheng
,
N. P.
,
Zeng
,
S. M.
, and
Liu
,
Z. Y.
, 2008, “
Preparation, Microstructures and Deformation Behavior of SiCP/6066Al SiCp/6066Al Composites Produced by PM Route
,”
J. Mater. Process. Technol.
0924-0136,
202
, pp.
27
40
.
4.
Cöcen
,
Ü.
, and
Önel
,
K.
, 2002, “
Ductility and Strength of Extruded SiCp/Aluminium-Alloy Composites
,”
Compos. Sci. Technol.
0266-3538,
62
, pp.
275
282
.
5.
Lloyd
,
D. J.
, 1994, “
Particle reinforced aluminum and magnesium matrix composites
,”
Int. Mater. Rev.
0950-6608,
39
, pp.
1
21
.
6.
Kolednik
,
O.
, and
Unterweger
,
K.
, 2008, “
The Ductility of Metal Matrix Composites—Relation to Local Deformation Behavior and Damage Evolution
,”
Eng. Fract. Mech.
0013-7944,
75
, pp.
3663
3676
.
7.
Song
,
M.
, and
Xiao
,
D.
, 2008, “
Modeling the Fracture Toughness and Tensile Ductility of SiCp/Al Metal Matrix Composites
,”
Mater. Sci. Eng., A
0921-5093,
474
, pp.
371
375
.
8.
Song
,
M.
, and
Huang
,
B.
, 2008, “
Effects of Particle Size on the Fracture Toughness of SiCp/Al Alloy Metal Matrix Composites
,”
Mater. Sci. Eng., A
0921-5093,
488
, pp.
601
607
.
9.
Srivastava
,
V. C.
,
Jindal
,
V.
,
Uhlenwinkel
,
V.
, and
Bauckhage
,
K.
, 2008, “
Hot-Deformation Behaviour of Spray-Formed 2014 Al+SiCp Metal Matrix Composites
,”
Mater. Sci. Eng., A
0921-5093,
477
, pp.
86
95
.
10.
Taha
,
M. A.
,
El-Mahallawy
,
N. A.
, and
El-Sabbagh
,
A. M.
, 2008, “
Some Experimental Data on Workability of Aluminium-Particulate-Reinforced Metal Matrix Composites
,”
J. Mater. Process. Technol.
0924-0136,
202
, pp.
380
385
.
11.
Tang
,
F.
,
Hagiwara
,
M.
, and
Schoenung
,
J. M.
, 2005, “
Microstructure and Tensile Properties of Bulk Nanostructured Al−5083/SiCp Composites Prepared by Cryomilling
,”
Mater. Sci. Eng., A
0921-5093,
407
, pp.
306
314
.
12.
Tursun
,
G.
,
Weber
,
U.
,
Soppa
,
E.
, and
Schmauder
,
S.
, 2006, “
The Influence of Transition Phases on the Damage Behaviour of an Al/10 vol. %SiC Composite
,”
Comput. Mater. Sci.
0927-0256,
37
, pp.
119
133
.
13.
Valdez
,
S.
,
Campillo
,
B.
,
Pérez
,
R.
,
Martínez
,
L.
, and
García
,
H. A.
, “
Synthesis and Microstructural Characterization of Al–Mg alloy–SiC Particle Composite
,”
Mater. Lett.
0167-577X, 2008,
62
,
2623
2625
.
14.
Vedani
,
M.
,
D’Errico
,
F.
, and
Gariboldi
,
E.
, 2006, “
Mechanical and Fracture Behaviour of Aluminium-Based Discontinuously Reinforced Composites at Hot Working Temperatures
,”
Compos. Sci. Technol.
0266-3538,
66
, pp.
343
349
.
15.
Thakur
,
S. K.
,
Kong
,
T. S.
, and
Gupta
,
M.
, 2007, “
Microwave Synthesis and Characterization of Metastable (Al/Ti) and Hybrid (Al/Ti + SiC) composites
,”
Mater. Sci. Eng., A
0921-5093,
452-453
, pp.
61
69
.
16.
Zhang
,
X. N.
,
Geng
,
L.
, and
Wang
,
G. S.
, 2006, “
Fabrication of Al-Based Hybrid Composites Reinforced With SiC Whiskers and SiC Nanoparticles by Squeeze Casting
,”
J. Mater. Process. Technol.
0924-0136,
176
, pp.
146
151
.
17.
Yang
,
Y.
,
Lan
,
J.
, and
Li
,
X.
, 2004, “
Study on Bulk Aluminum Matrix Nano-Composite Fabricated by Ultrasonic Dispersion of Nano-Sized Sic Particles in Molten Aluminum Alloy
,”
Mater. Sci. Eng., A
0921-5093,
380
, pp.
378
383
.
18.
Wong
,
W. L. E.
,
Gupta
,
M.
, and
Lim
,
C. Y. H.
, 2006, “
Enhancing the Mechanical Properties of Pure Aluminum Using Hybrid Reinforcement Methodology
,”
Mater. Sci. Eng., A
0921-5093,
423
, pp.
148
152
.
19.
Gupta
,
M.
,
Lai
,
M. O.
, and
Lim
,
C. Y. H.
, 2006, “
Development of a Novel Hybrid Aluminum-Based Composite With Enhanced Properties
,”
J. Mater. Process. Technol.
0924-0136,
176
, pp.
191
199
.
20.
Gupta
,
M.
,
Lai
,
M. O.
, and
Saravanaranganathan
,
D.
, 2000, “
Synthesis, Microstructure and Properties Characterization of Disintegrated Melt Deposited Mg/SiC Composites
,”
J. Mater. Sci.
0022-2461,
35
, pp.
2155
2165
.
21.
Manoharan
,
M.
,
Lim
,
S. C. V.
, and
Gupta
,
M.
, 2002, “
Application of a Model for the Work Hardening Behavior to Mg/SiC Composites Synthesized Using a Fluxless Casting Process
,”
Mater. Sci. Eng., A
0921-5093,
333
, pp.
243
249
.
22.
Porter
,
D. A.
, 2002,
Phase Transformation in Metals and Alloys
,
2nd ed.
,
Stanley Thornes Publ.
,
Cheltenham, UK
.
23.
Callister
,
W. D.
, 1994,
Materials Science and Engineering: An introduction
,
3rd ed.
,
Wiley
,
New York
, p.
183
.
You do not currently have access to this content.