The use of composite materials with continuous fibers in the aeronautic and aerospace industries requires reliable and precise methods for the prediction of failure. Predicting failure stresses and failure modes in composite laminates is very difficult. The choice between failure criteria is complex, and there is a lack of experimental study to validate the result obtained partly because the biaxial tests are still difficult to perform. This work employs a mixed methodology based on a theoretical and an experimental approach to develop a procedure for the choice and the validation of the failure criterion. The comparison is concerned not only with the macroscopic failure but also with the succession of the failure, the failure mode, and the effect of the geometrical parameters of the test specimen. The most general failure criteria are tested by using two approaches of the stiffness reduction. A finite element code has been elaborated within our laboratory for postfailure treatment. The numerical simulation results are compared with the experimental ones and permit us to make a conclusion on the validity of the failure criteria used.

1.
Hashin
,
Z.
, 1980, “
Failure Criteria for Unidirectional Fiber Composites
,”
ASME J. Appl. Mech.
0021-8936,
47
, pp.
329
334
.
2.
Nahas
,
M. N.
, 1986, “
Survey of Failure and Post-Failure Theories of Laminated Fiber Reinforced Composites
,”
Technol. Rev.
0040-1692,
8
, pp.
138
153
.
3.
Feng
,
W. W.
, 1991, “
A Failure Criterion for Composite Materials
,”
J. Compos. Mater.
0021-9983,
25
, pp.
88
100
.
4.
Mickaeli
,
W.
, and
Haybrechts
,
J.
, 1994, “
A New Approach for the Dimensioning of Thick Laminates Using Physically Based Strength Criteria
,”
39th Sampe Symposium
, April, pp.
11
14
.
5.
Echaabi
,
J.
,
Trochu
,
F.
, and
Gauvin
,
R.
, 1996, “
Review of Failure Criteria of Fibrous Composites Materials
,”
Polym. Compos.
0272-8397,
17
(
6
), pp.
786
798
.
6.
Echaabi
,
J.
, and
Trochu
,
F.
, 1996, “
A Methodology to Derive the Implicit Equation of Failure Criteria for Fibrous Composite Laminates
,”
J. Compos. Mater.
0021-9983,
30
(
10
), pp.
1088
1115
.
7.
Hart-Smith
,
L. J.
, 1998, “
Predictions of the Original and Truncated Maximum-Strain Failure Models for Certain Fibrous Composite Laminates
,”
Compos. Sci. Technol.
0266-3538,
58
, pp.
1151
1178
.
8.
Yeh
,
H. -L.
, and
Yeh
,
H. -Y.
, 2002, “
The Modified Quadric Surfaces Criterion for Composite Materials
,”
J. Reinf. Plast. Compos.
0731-6844,
21
(
3
), pp.
277
289
.
9.
Yeh
,
H. -L.
, 2003, “
Quadric Surfaces Criterion for Composite Materials
,”
J. Reinf. Plast. Compos.
0731-6844,
22
(
6
), pp.
517
532
.
10.
Hinton
,
M. J.
,
Kaddour
,
A. S.
, and
Soden
,
P. D.
, 2004, “
A Further Assessment of the Predictive Capabilities of Current Failure Theories for Composite Laminates: Comparison With Experimental Evidence
,”
Compos. Sci. Technol.
0266-3538,
64
, pp.
549
588
.
11.
DeTeresa
,
S. J.
, and
Larsen
,
G. J.
, 2003, “
Reduction in the Number of Independent Parameters for the Tsai-Wu Tensor Polynomial Theory of Strength for Composite Materials
,”
J. Compos. Mater.
0021-9983,
37
(
19
), pp.
1769
1785
.
12.
Davila
,
C. G.
,
Camanho
,
P. P.
, and
Rose
,
C. A.
, 2005, “
Failure Criteria for FRP Laminates
,”
J. Compos. Mater.
0021-9983,
39
(
4
), pp.
323
345
.
13.
1992, ASTM test, “
American Standards of Testing and Materials
,” p.
790
.
14.
Greif
,
R.
, and
Chapon
,
E.
, 1993, “
Investigation of Successive Failure Modes in Graphite/Epoxy Laminated Composite Beams
,”
J. Reinf. Plast. Compos.
0731-6844,
12
(
5
), pp.
602
621
.
15.
Echaabi
,
J.
,
Trochu
,
F.
,
Pham
,
F. X. T.
, and
Ouelette
,
M.
, 1996, “
Theoretical and Experimental Investigation of Failure and Damage Progression of Quasi-Isotropic Graphite Epoxy Composites in Flexural Bending Test
,”
J. Reinf. Plast. Compos.
0731-6844,
15
(
7
), pp.
740
755
.
16.
Yongchan
,
K.
,
Davalo
,
J. F.
, and
Barbero
,
E. J.
, 1996, “
Progressive Failure Analysis of Laminated Composite Beam
,”
J. Compos. Mater.
0021-9983,
30
(
5
), pp.
536
560
.
17.
Lopez-Amido
,
R.
,
Davalos
,
F. J.
, and
Barbero
,
E. J.
, 1995, “
Experimental Evaluation of Stiffness of Laminated Composite Beam Elements Under Flexure
,”
J. Reinf. Plast. Compos.
0731-6844,
14
, pp.
349
361
.
18.
Chen
,
W.
, and
Hard Lee
,
S. S.
, 1995, “
Numerical and Experimental Failure Analysis of Composite Laminates With Bolted Joints Under Bending Loads
,”
J. Compos. Mater.
0021-9983,
29
(
1
), pp.
15
36
.
19.
Prusty
,
B. G.
,
Satsangi
,
S. K.
, and
Ray
,
C.
, 2001, “
First Ply Failure Analysis of Laminated Panels Under Transverse Loading
,”
J. Reinf. Plast. Compos.
0731-6844,
20
(
8
), pp.
671
684
.
20.
Pal
,
P.
, and
Ray
,
C.
, 2002, “
Progressive Failure Analysis of Laminated Composite Plates by Finite Element Method
,”
J. Reinf. Plast. Compos.
0731-6844,
21
(
16
), pp.
1505
1513
.
21.
Whitney
,
J. M.
, and
Pagano
,
N. J.
, 1972, “
Shear Deformation in Heterogeneous Anisotropic Plates
,”
ASME J. Appl. Mech.
0021-8936,
6
, pp.
426
440
.
22.
Highsmith
,
A. L.
, and
Reifsnider
,
K. L.
, 1982, “
Stiffness-Reduction Mechanisms in Composite Laminates
,”
ASTM Spec. Tech. Publ.
0066-0558,
775
, pp.
103
117
.
23.
Laws
,
N.
,
Dvorak
,
G. J.
, and
Hejazi
,
M.
, 1983, “
Stiffness Changes in Unidirectional Composites Caused by Craks Systems
,”
Mech. Mater.
0167-6636,
2
, pp.
123
127
.
24.
Hashin
,
Z.
, 1985, “
Analysis of Craked Laminates: A Variational Approach
,”
Mech. Mater.
0167-6636,
4
, pp.
121
126
.
25.
Talreja
,
R.
, 1985, “
Transverse Cracking and Stiffness Reduction in Composite Laminates
,”
J. Compos. Mater.
0021-9983,
19
, pp.
355
375
.
You do not currently have access to this content.