A variant of the equal channel angular pressing (ECAP) process is examined in this paper where the channels are of rectangular shape with different thicknesses while the widths of the channels are the same. The process is named nonequal channel angular pressing and it is similar to the earlier introduced dissimilar channel angular pressing (DCAP) process. In DCAP, however, the diameters are near values, with the exit channel being slightly larger, while in NECAP, the exit channel is much smaller attributing several advantages to nonequal channel angular pressing (NECAP) with respect to ECAP. In this work an analysis is performed to determine the strain mode in a 90 deg NECAP die. A new flow line function is also presented to better describe the deformation field. The proposed flow line function is validated using finite element simulations. A comparison is made between ECAP and NECAP. Finally, texture predictions are presented for NECAP of fcc polycrystals. The advantages of this severe plastic deformation process are the following: (i) significantly larger strains can be obtained in one pass with respect to the classical ECAP process, (ii) grains become more elongated that enhances their fragmentation, and (iii) large hydrostatic stresses develop that improve the stability of the deformation process for difficult-to-work materials. The results obtained concerning the deformation field are also applicable in the machining process for the plastic strains that imparted into the chips.

1.
Segal
,
V. M.
, 1974, Ph.D. thesis, Minsk, Russia.
2.
Segal
,
V. M.
,
Reznikov
,
V. I.
,
Drobyshevkiy
,
A. E.
, and
Kopylov
,
V. I.
, 1981, “
Plastic Working of Metals by Simple Shear
,”
Russ. Metall.
0036-0295
1
, pp.
99
105
.
3.
Segal
,
V. M.
, 1982, “
Thermomechanical Treatment of the Elinvar Alloy 44NKhMT Using Plain Shear
,”
Metal Sci. Heat Treat.
,
24
, pp.
706
710
.
4.
Valiev
,
R. Z.
, and
Langdon
,
T. G.
, 2006, “
Principles of Equal-Channel Angular Pressing as a Processing Tool for Grain Refinement
,”
Prog. Mater. Sci.
0079-6425,
51
, pp.
881
981
.
5.
Lapovok
,
R.
, 2005, “
The Role of Back-Pressure in Equal Channel Angular Extrusion
,”
J. Mater. Sci.
0022-2461,
40
, pp.
341
346
.
6.
Lee
,
D. N.
, 2000, “
An Upper-Bound Solution of Channel Angular Deformation
,”
Scr. Mater.
1359-6462,
43
, pp.
115
118
.
7.
Lee
,
J. C.
,
Seok
,
H. K.
,
Han
,
J. H.
, and
Chung
,
Y. H.
, 2001, “
Controlling the Textures of the Metal Strips via the Continuous Confined Strip Shearing (C2S2) Process
,”
Mater. Res. Bull.
0025-5408,
36
, pp.
997
1004
.
8.
Lee
,
J. C.
,
Seok
,
H. K.
, and
Suh
,
J. Y.
, 2002, “
Microstructural Evolutions of the Al Strip Prepared by Cold Rolling and Continuous Equal Channel Angular Pressing
,”
Acta Mater.
1359-6454,
50
, pp.
4005
4019
.
9.
Han
,
J. H.
,
Oh
,
K. H.
, and
Lee
,
J. C.
, 2003, “
Effect of Initial Texture on Texture Evolution in 1050 Al Alloys Under Simple Shear
,”
Metall. Mater. Trans. A
1073-5623,
34
, pp.
1675
1681
.
10.
Lee
,
J. C.
,
Suh
,
J. Y.
, and
Ahn
,
J. P.
, 2003, “
Work-Softening Behavior of the Ultrafine-Grained Al Alloy Processed by High-Strain-Rate, Dissimilar-Channel Angular Pressing
,”
Metall. Mater. Trans. A
1073-5623,
34
, pp.
625
632
.
11.
Han
,
J. H.
,
Suhb
,
J. Y.
,
Jee
,
K. K.
, and
Lee
,
J. C.
, 2008, “
Evaluation of Formability and Planar Anisotropy Based on Textures in Aluminum Alloys Processed by a Shear Deforming Process
,”
Mater. Sci. Eng., A
0921-5093,
477
, pp.
107
120
.
12.
Segal
,
V. M.
, 1999, “
Equal Channel Angular Extrusion: From Macromechanics to Structure Formation
,”
Mater. Sci. Eng., A
0921-5093,
271
, pp.
322
333
.
13.
Han
,
W. Z.
,
Zhang
,
Z. F.
,
Wu
,
S. D.
, and
Li
,
S. X.
, 2007, “
Influences of Crystallographic Orientations on Deformation Mechanism and Grain Refinement of Al Single Crystals Subjected to One-Pass Equal-Channel Angular Pressing
,”
Acta Mater.
1359-6454,
55
, pp.
5889
5900
.
14.
Iwahashi
,
Y.
,
Wang
,
J.
,
Horita
,
Z.
,
Nemoto
,
M.
, and
Langdon
,
T. G.
, 1996, “
Principle of Equal-Channel Angular Pressing for the Processing of Ultra-Fine Grained Materials
,”
Scr. Mater.
1359-6462,
35
, pp.
143
146
.
15.
Tóth
,
L. S.
,
Arruffat-Massion
,
R.
,
Baik
,
S. C.
,
Germain
,
L.
, and
Suwas
,
S.
, 2004, “
Analysis of Texture Evolution in Equal Channel Angular Extrusion of Copper Using a New Flow Field
,”
Acta Mater.
1359-6454,
52
, pp.
1885
1898
.
16.
Zisman
,
A. A.
,
Rybin
,
V. V.
,
Van Boxel
,
S.
,
Seefeldt
,
M.
, and
Verlinden
,
M. B.
, 2006, “
Equal Channel Angular Drawing of Aluminium Sheet
,”
Mater. Sci. Eng., A
0921-5093,
427
, pp.
123
129
.
17.
Jin
,
Y. H.
,
Huh
,
M. Y.
, and
Chung
,
Y. H.
, 2004, “
Evolution of Textures and Microstructures in IF-Steel Sheets During Continuous Confined Strip Shearing and Subsequent Recrystallization Annealing
,”
J. Mater. Sci.
0022-2461,
39
, pp.
5311
5314
.
18.
Huang
,
Y.
, and
Prangnell
,
P. B.
, 2007, “
Continuous Frictional Angular Extrusion and Its Application in the Production of Ultrafine-Grained Sheet Metals
,”
Scr. Mater.
1359-6462,
56
, pp.
333
336
.
19.
Lapovok
,
R.
,
McKenzie
,
P. W. J.
,
Thomson
,
P. F.
, and
Semiatin
,
S. L.
, 2007, “
Processing and Properties of Ultrafine-Grain Aluminum Alloy 5005 Sheet
,”
J. Mater. Sci.
0022-2461,
42
, pp.
1649
1659
.
20.
Saito
,
Y.
,
Utsunomiya
,
H.
,
Tsuji
,
N.
, and
Sakai
,
T.
, 1999, “
Novel Ultra-High Straining Process for Bulk Materials—Development of the Accumulative Roll-Bonding (ARB) Process
,”
Acta Mater.
1359-6454,
47
, pp.
579
583
.
21.
Hasani
,
A.
, and
Tóth
,
L. S.
, 2009, “
A Fan-Type Flow-Line Model in Equal Channel Angular Extrusion
,”
Scr. Mater.
1359-6462,
61
, pp.
24
27
.
22.
Altan
,
S. B.
,
Antar
,
N.
, and
Gultekin
,
E.
, 1992, “
A Comparison of Some Deformation Models in Axisymmetric Extrusion
,”
J. Mater. Process. Technol.
0924-0136,
33
, pp.
263
272
.
23.
Beyerlein
,
I. J.
, and
Tóth
,
L. S.
, 2009, “
Texture Evolution in Equal-Channel Angular Extrusion
,”
Prog. Mater. Sci.
0079-6425,
54
, pp.
427
510
.
24.
Molinari
,
A.
, and
Tóth
,
L. S.
, 1994, “
Tuning a Self Consistent Viscoplastic Model by Finite Element Results—I. Modeling
,”
Acta Metall. Mater.
0956-7151,
42
, pp.
2453
2458
.
25.
Beyerlein
,
I. J.
,
Li
,
S.
,
Necker
,
C. T.
,
Alexander
,
D. J.
, and
Tomé
,
C. N.
, 2005, “
Non-Uniform Microstructure and Texture Evolution During Equal Channel Angular Extrusion
,”
Philos. Mag.
1478-6435,
85
, pp.
1359
1394
.
26.
Zaïri
,
F.
,
Aour
,
B.
,
Gloaguen
,
J. M.
,
Naït-Abdelaziz
,
M.
, and
Lefebvre
,
J. M.
, 2006, “
Numerical Modelling of Elastic-Viscoplastic Equal Channel Angular Extrusion Process of a Polymer
,”
Comput. Mater. Sci.
0927-0256,
38
, pp.
202
216
.
27.
Skrotzki
,
W.
,
Scheerbaum
,
N.
,
Oertel
,
C. G.
,
Arruffat-Massion
,
R.
,
Suwas
,
S.
, and
Tóth
,
L. S.
, 2007, “
Microstructure and Texture Gradient in Copper Deformed by Equal Channel Angular Pressing
,”
Acta Mater.
1359-6454,
55
, pp.
2013
2024
.
28.
Skrotzki
,
W.
,
Tóth
,
L. S.
,
Klöden
,
B.
,
Brokmeier
,
H. G.
, and
Arruffat-Massion
,
R.
, 2008, “
Texture After ECAP of a Cube-Oriented Ni Single Crystal
,”
Acta Mater.
1359-6454,
56
, pp.
3439
3449
.
29.
Hasani
,
A.
,
Lapovok
,
R.
,
Tóth
,
L. S.
, and
Molinari
,
A.
, 2008, “
Deformation Field Variations in Equal Channel Angular Extrusion Due to Back Pressure
,”
Scr. Mater.
1359-6462,
58
, pp.
771
774
.
30.
Hasani
,
A.
, 2009, Ph.D. thesis, University of Metz, France.
31.
Zhilyaev
,
A. P.
,
McNelley
,
T. R.
, and
Langdon
,
T. G.
, 2007, “
Evolution of Microstructure and Microtexture in fcc Metals During High-Pressure Torsion
,”
J. Mater. Sci.
0022-2461,
42
, pp.
1517
1528
.
32.
Gholinia
,
A.
,
Prangnell
,
P. B.
, and
Markushev
,
M. V.
, 2000, “
The Effect of Strain Path on the Development of Deformation Structures in Severely Deformed Aluminium Alloys Processed by ECAE
,”
Acta Mater.
1359-6454,
48
, pp.
1115
1130
.
You do not currently have access to this content.