Based on the critical plane approach, the drawbacks of the Wang–Brown (WB) model are analyzed. It is discovered that the normal strain excursion in the WB model cannot account for the additional cyclic hardening well. In order to solve this problem, a new damage parameter for multiaxial fatigue is proposed. In the meantime, the procedure for multiaxial fatigue life assessment incorporating critical plane damage model is presented as well. In the new damage parameter, both strain and stress components are considered, and the effect of the additional cyclic hardening on the fatigue life during nonproportional loading is taken into account as well. In addition, the proposed model is modified when the mean stress is existence. It is convenient for engineering application because of no material constants in this parameter. The capability of fatigue life assessment for the proposed fatigue damage model is checked against the experimental data found in literature for tubular specimens of 1045HR steel, hot-rolled 45 steel, S460N steel, GH4169 alloy at elevated temperature, and the notched shaft of SAE 1045 steel, which is under cyclic bending and torsion loading. It is demonstrated that the proposed criterion gives satisfactory results for all the five checked materials.

1.
Fatemi
,
A.
, and
Socie
,
D. F.
, 1988, “
Critical Plane Approach to Multiaxial Fatigue Damage Including Out-of-Phase Loading
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
11
(
3
), pp.
149
65
.
2.
Chen
,
X.
,
Gao
,
Q.
, and
Sun
,
X. F.
, 1994, “
Damage Analysis of Low Cycle Fatigue Under Non-Proportional Loading
,”
Int. J. Fatigue
0142-1123,
16
, pp.
221
225
.
3.
Chen
,
X.
,
An
,
K.
, and
Kim
,
K. S.
, 2004, “
Low-Cycle Fatigue of 1Cr–18Ni–9Ti Stainless Steel and Related Weld Metal Under Axial, Torsional and 90° Out-of-Phase Loading
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
27
, pp.
439
448
.
4.
Varvani-Farahani
,
A.
, 2000, “
A New Energy-Critical Plane Parameter for Fatigue Life Assessment of Various Metallic Materials Subjected to In-Phase and Out-of-Phase Multiaxial Fatigue Loading Conditions
,”
Int. J. Fatigue
0142-1123,
22
, pp.
295
305
.
5.
Itoh
,
T.
,
Sakane
,
M.
,
Ohnami
,
M.
, and
Socie
,
D. F.
, 1995, “
Non-Proportional Low Cycle Fatigue Criterion for Type 304 Stainless Steel
,”
ASME J. Eng. Mater. Technol.
0094-4289,
117
, pp.
285
292
.
6.
Doong
,
S. H.
,
Socie
,
D. F.
, and
Robertson
,
I. M.
, 1990, “
Dislocation Substructure and Non-Proportional Hardening
,”
ASME J. Eng. Mater. Technol.
0094-4289,
112
, pp.
456
464
.
7.
Glinka
,
G.
,
Shen
,
G.
, and
Plumtree
,
A.
, 1995, “
A Multiaxial Fatigue Strain Energy Density Parameter Related to the Critical Fracture Plane
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
18
(
1
), pp.
37
46
.
8.
McDiarmid
,
D. L.
, 1994, “
A Shear Stress Based Critical-Plane Criterion of Multiaxial Fatigue for Design and Life Prediction
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
17
(
12
), pp.
1475
1484
.
9.
Brown
,
M. W.
, and
Miller
,
K. J.
, 1982, “
Two Decades of Progress in the Assessment of Multiaxial Low-Cycle Fatigue Life
,”
Low-Cycle Fatigue and Life Prediction
,
C.
Amzallag
,
B.
Leis
, and
P.
Rabbe
, eds.,
ASTM
,
Philadelphia, PA
, pp.
482
499
.
10.
Wang
,
C. H.
, and
Brown
,
M. W.
, 1993, “
A Path-Independent Parameter for Fatigue Under Proportional and Non-Proportional Loading
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
16
, pp.
1285
1297
.
11.
Das
,
J.
, and
Sivakumar
,
S. M.
, 2000, “
Multiaxial Fatigue Life Prediction of a High Temperature Steam Turbine Rotor Using a Critical Plane Approach
,”
Eng. Failure Anal.
1350-6307,
7
, pp.
347
358
.
12.
Kanazawa
,
K.
,
Miller
,
K. J.
, and
Brown
,
M. W.
, 1977, “
Low Cycle Fatigue Under Out-of-Phase Loading Conditions
,”
ASME J. Eng. Mater. Technol.
0094-4289,
99
, pp.
222
228
.
13.
Shang
,
D. G.
,
Sun
,
G. Q.
,
Yan
,
C. L.
,
Chen
,
J. H.
, and
Cai
,
N.
, 2007, “
Creep-Fatigue Life Prediction Under Fully-Reversed Multiaxial Loading at High Temperatures
,”
Int. J. Fatigue
0142-1123,
29
, pp.
705
712
.
14.
Kandile
,
F. A.
,
Brown
,
M. W.
, and
Miller
,
K. J.
, 1982,
Biaxial Low Cycle Fatigue Fracture of 316 Stainless Steel at Elevated Temperatures
,
The Metal Society
,
London
, Vol.
280
, pp.
203
210
.
15.
Brown
,
M. W.
, and
Miller
,
K. J.
, 1978, “
A Theory for Fatigue Under Multiaxial Stress-Strain Condition
,”
Proc. Inst. Mech. Eng.
0020-3483,
187
, pp.
745
755
.
16.
Chen
,
X.
,
Xu
,
S.
, and
Huang
,
D.
, 1999, “
A Critical Plane-Strain Energy Density Criterion for Multiaxial Low-Cycle Fatigue Life Under Non-Proportional Loading
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
22
, pp.
679
686
.
17.
Socie
,
D. F.
, and
Marquis
,
G. B.
, 2000,
Multiaxial Fatigue
,
Society of Automotive Engineers, Inc.
,
Warrendale, PA
.
18.
Shang
,
D. G.
,
Sun
,
G. Q.
,
Deng
,
J.
, and
Yan
,
C. L.
, 2007, “
Multiaxial Fatigue Damage Parameter and Life Prediction for Medium-Carbon Steel Based on the Critical Plane Approach
,”
Int. J. Fatigue
0142-1123,
29
, pp.
2200
2207
.
19.
Jiang
,
Y. Y.
,
Hertel
,
O.
, and
Vormwald
,
M.
, 2007, “
An Experimental Evaluation of Three Critical Plane Multiaxial Fatigue Criteria
,”
Int. J. Fatigue
0142-1123,
29
, pp.
1490
1502
.
20.
Sun
,
G. Q.
,
Shang
,
D. G.
,
Ding
,
L.
,
Jia
,
G. H.
, and
Wang
R. J.
, 2006, “
A New Multiaxial Fatigue Damage Parameter Under Multiaxial Low Cycle Loading
,”
Journal of Beijing University of Technology
,
32
(
8
), pp.
688
692
. 0254-0037
21.
Fash
,
J. W.
,
Socie
,
D. F.
, and
McDowell
,
D. L.
, 1985, “
Fatigue Life Estimates for a Simple Notched Component Under Biaxial Loading
,”
Multiaxial Fatigue
,
K. J.
Miller
and
M. W.
Brown
, eds.,
American Society for Testing and Materials
,
Philadelphia, PA
, pp.
497
513
.
22.
Tairs
,
S.
,
Inoue
,
T.
, and
Yoshida
,
T.
, 1969, “
Low Cycle Fatigue Under Multiaxial Stresses (in the Case of Combined Cyclic Tension-Compression and Cyclic Torsion) at Room Temperature
,”
Proceedings of the 12th Japan Congress on Testing Materials
, Vol.
2
, pp.
50
55
.
23.
Muralidharan
,
U.
, and
Manson
,
S. S.
, 1988, “
Modified Universal Slopes Equation for Estimation of Fatigue Characteristics
,”
ASME J. Eng. Mater. Technol.
0094-4289,
110
, pp.
55
58
.
24.
Zhang
,
Z. P.
,
Qiao
,
Y. J.
,
Sun
,
Q.
,
Li
,
C. W.
, and
Li
,
J.
, 2009, “
Theoretical Estimation to the Cyclic Strength Coefficient and the Cyclic Strain-Hardening Exponent for Metallic Materials: Preliminary Study
,”
J. Mater. Eng. Perform.
1059-9495,
18
, pp.
245
254
.
25.
Socie
,
D. F.
, and
Shield
,
T. W.
, 1984, “
Mean Stress Effects in Biaxial Fatigue of Inconel 718
,”
ASME J. Eng. Mater. Technol.
0094-4289,
106
, pp.
227
232
.
26.
McDowell
,
D. L.
, 1987, “
An Evaluation of Recent Developments in Hardening and Flow Rules for Rate-Independent, Nonproportional Cyclic Plasticity
,”
ASME J. Appl. Mech.
0021-8936,
54
, pp.
323
334
.
27.
Kanazawa
,
K.
,
Miller
,
K. J.
, and
Brown
,
M. W.
, 1979, “
Cyclic Deformation of 1% Cr-Mo-V Steel Under Out-of-Phase Loads
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
2
, pp.
217
228
.
28.
Chen
,
X.
,
Gao
,
Q.
, and
Sun
,
X. F.
, 1996, “
Low Cycle Fatigue Under Non-Proportional Loading
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
19
(
7
), pp.
839
854
.
29.
Jiang
,
Y.
, 2000, “
A Fatigue Criterion for General Multiaxial Loading
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
23
, pp.
19
32
.
You do not currently have access to this content.