The increasing demand of reliable creep design for very long lives (exceeding 100.000 h), as those for high stress-low temperatures and high temperature-low stress regimes, requires a model formulation capable to account for the nonlinearity in the stress dependence of the logarithm of the creep rate as a result of the combination of both diffusional and dislocation type creeps. In this paper, a creep model, where the effect of mechanism change has been accounted for through an explicit dependence of the creep exponent n on stress, has been proposed. The model has been also extended, incorporating damage processes and characteristics of tertiary creep stage, adopting a time independent damage formulation proposed by the authors. An application example of the proposed approach to high purity aluminum is given.

1.
Ashby
,
M. F.
, and
Frost
,
H. J.
, 1982,
Deformation Mechanism Maps—The Plasticity and Creep of Metals and Ceramics
,
Pergamon
,
Oxford, UK
.
2.
Nabarro
,
F. R. N.
, 2004, “
Do We Have an Acceptable Model for Power-Law Creep?
,”
Mater. Sci. Eng., A
0921-5093,
387–389
, pp.
659
664
.
3.
Kassner
,
M. E.
, 2004, “
Taylor Hardening in Five-Power-Law Creep of Metals and Class M Alloys
,”
Acta Mater.
1359-6454,
52
, pp.
1
9
.
4.
Sherby
,
O. D.
, and
Burke
,
P. M.
, 1967, “
Mechanical Behaviour of Crystalline Solids at Elevated Temperatures
,”
Prog. Mater. Sci.
0079-6425,
13
, pp.
325
390
.
5.
Barrett
,
C. R.
, 1967, “
On the Stress Dependence of High-Temperature Creep
,”
Trans. Metall. Soc. AIME
0543-5722,
239
, pp.
1726
1729
.
6.
Raymond
,
L.
, and
Dorn
,
E.
, 1964, “
Recovery of Creep-Resistant Substructures
,”
Trans. Metall. Soc. AIME
0543-5722,
230
, pp.
560
567
.
7.
Argon
,
A. S.
, 1970, “
Internal Stresses Arising From the Interaction of Mobile Dislocations
,”
Scr. Metall.
0036-9748,
4
, pp.
1001
1004
.
8.
Taleff
,
E. M.
,
Green
,
W. P.
,
Kulas
,
M. -A.
,
Mcnelley
,
T. R.
, and
Krajewski
,
P. E.
, 2005, “
Analysis, Reprensetation, and Prediction of Creep Transients in Class I Alloys
,”
Mater. Sci. Eng., A
0921-5093,
410–411
, pp.
32
37
.
9.
Mompiou
,
F.
, and
Caillard
,
D.
, 2008, “
On the Stress Exponent of Dislocation Climb Velocity
,”
Mater. Sci. Eng., A
0921-5093,
483–484
, pp.
143
147
.
10.
Johnston
,
W. G.
, and
Gilman
,
J. J.
, 1959, “
Dislocation Velocities, Dislocation Densities, and Plastic Flow in Lithium Fluoride Crystals
,”
J. Appl. Phys.
0021-8979,
30
, pp.
129
144
.
11.
Stein
,
D. F.
, and
Low
,
J. R.
, Jr.
, 1960, “
Mobility of Edge Dislocations in Silicon-Iron Crystals
,”
J. Appl. Phys.
0021-8979,
31
, pp.
362
369
.
12.
Barrett
,
C.
, and
Nix
,
W.
, 1965, “
A Model for Steady State Creep Based on the Motion of Jogged Screw Dislocations
,”
Acta Metall.
0001-6160,
13
, pp.
1247
1258
.
13.
Caillard
,
D.
, and
Martin
,
J. L.
, eds., 2003,
Thermally Activated Mechanisms in Crystal Plasticity
(
Pergamon
,
New York
).
14.
Evans
,
R. W.
, and
Wilshire
,
B.
, 1985,
Creep of Metals and Alloys
,
The Institute of Metals
,
London
.
15.
Orlovà
,
A.
, 1979, “
Mobile Dislocation Density in the Steady State Creep and in the Strain Transient Dip Test
,”
Scr. Metall.
0036-9748,
13
, pp.
763
766
.
16.
Bonora
,
N.
, and
Esposito
,
L.
, “
Mechanism Based Creep Model Incorporating Damage: Application to Precipitation Hardened Alloys
,” to be presented at
12th International Conference on Creep and Fracture of Engineering Materials and Structures
, CREEP2011, Kyoto, Japan.
17.
Straub
,
S.
, and
Blum
,
W.
, 1990, “
Does the 'Natural' Third Power Law of Steady State Creep Hold for Pure Aluminum?
,”
Scr. Metall. Mater.
0956-716X,
24
, pp.
1837
1842
.
18.
Tapsell
,
H. J.
,
Bristow
,
C.
, and
Jenkins
,
C. H. M.
, 1941, “
The Properties and Mode of Rupture of a Molybdenum and a Molybdenum-Vanadium Steel, Judged From Prolonged Creep Tests to Fracture
,”
Proc. Inst. Mech. Eng.
0020-3483,
146
, pp.
208
222
.
19.
Hanson
,
D.
, and
Wheeler
,
M. A.
, 1931, “
The Deformation of Metals Under Prolonged Loading. Part I: The Flow and Fracture of Aluminum
,”
J. Inst. Met.
0020-2975,
45
, pp.
229
264
.
20.
Wilshire
,
B.
, and
Burt
,
H.
, 2008, “
Damage Evolution During Creep of Steels
,”
Int. J. Pressure Vessels Piping
0308-0161,
85
, pp.
47
54
.
21.
Ashby
M. F.
, and
Dyson
,
B. F.
, 1984,
Advances in Fracture Research
,
Pergamon
,
New York
.
22.
Dyson
,
B. F.
, 2000, “
Use of CDM in Materials Modeling and Component Creep Life Prediction
,”
ASME J. Pressure Vessel Technol.
0094-9930,
122
, pp.
281
296
.
23.
Rabotnov
,
Y. N.
, 1969,
Creep Problems in Structural Members
,
North-Holland
,
Amsterdam
.
24.
Lemaitre
,
J.
, 1992,
A Course on Damage Mechanics
,
Springer-Verlag
,
Berlin
.
25.
Bonora
,
N.
, 1997, “
A Nonlinear CDM Model for Ductile Failure
,”
Eng. Fract. Mech.
0013-7944,
58
, pp.
11
28
.
26.
Lemaitre
,
J.
, 1985, “
A Continuous Damage Mechanics Model for Ductile Fracture
,”
ASME J. Eng. Mater. Technol.
0094-4289,
107
, pp.
83
89
.
27.
Esposito
,
L.
, and
Bonora
,
N.
, 2009, “
Time-Independent Formulation for Creep Damage Modeling in Metals Based on Void and Crack Evolution
,”
Mater. Sci. Eng., A
0921-5093,
510–511
, pp.
207
213
.
28.
Lombardi
,
P.
,
Cipolla
,
L.
,
Folgarait
,
P.
,
Bonora
,
N.
, and
Esposito
,
L.
, 2009, “
New Time-Independent Formulation for Creep Damage in Polycrystalline Metals and Its Specialisation to High Alloy Steel for High-Temperature Applications
,”
Mater. Sci. Eng., A
0921-5093,
510–511
, pp.
214
218
.
29.
Vogler
,
S.
, and
Blum
,
W.
, 1990, “
Micromechanical Modeling of Creep in Terms of Composite Model
,”
Proceedings of the Fourth International Conference on Creep and Fracture
, Swansea,
B.
Wilshire
, Eds., pp.
65
95
.
30.
Ishikawa
,
K.
,
Okuda
,
H.
, and
Kobayashi
,
Y.
, 1997, “
Creep Behaviors of Highly Pure Aluminum at Lower Temperature
,”
Mater. Sci. Eng., A
0921-5093,
234–236
, pp.
154
156
.
31.
Ishikawa
,
K.
,
Masataka
,
M.
, and
Yasuo
,
K.
, 2002, “
Mechanical Modelling and Microstructural Observvation of Pure Aluminum Crept Under Constant Stress
,”
Mater. Sci. Eng., A
0921-5093,
322
, pp.
153
3158
.
You do not currently have access to this content.