A computational scheme for estimating the effective elastic properties of a particle reinforced matrix is investigated. The randomly distributed same-sized spherical particles are assumed to result in a composite material that is macroscopically isotropic. The scheme results in a computational efficient method to establish the correct bulk and shear moduli by representing the three-dimensional (3D) structure in a two-dimensional configuration. To this end, the statistically equivalent area fraction is defined in this work, which depends on two parameters: the particle volume fraction and the number of particles in the 3D volume element. We suggest that using the statistically equivalent area fraction, introduced and defined in this work, is an efficient way to obtain the effective elastic properties of an isotropic media containing randomly dispersed same-size spherical particles.

1.
Temizer
,
I.
, and
Zohdi
,
T. I.
, 2007, “
A Numerical Method for Homogenization in Non-Linear Elasticity
,”
Comput. Mech.
0178-7675,
40
, pp.
281
298
.
2.
Nemat-Nasser
,
S.
, and
Hori
,
M.
, 1999,
Micromechanics: Overall Properties of Heterogeneous Materials
,
Elsevier
,
New York
.
3.
Qu
,
J.
, and
Cherkaoui
,
M.
, 2006,
Fundamentals of Micromechanics of Solids
,
Wiley
,
New York
.
4.
Torquato
,
S.
, 2001,
Random Heterogeneous Materials
,
Springer
,
New York
.
5.
Zohdi
,
T. I.
, and
Wriggers
,
P.
, 2005,
Introduction to Computational Mechanics
,
Springer-Verlag
,
Berlin
.
6.
Zohdi
,
T. I.
, and
Wriggers
,
P.
, 2001, “
Aspects of the Computational Testing of the Mechanical Properties of Microheterogeneous Material Samples
,”
Int. J. Numer. Methods Eng.
0029-5981,
50
, pp.
2573
2599
.
7.
Hashin
,
Z.
, and
Shtrikman
,
S.
, 1963, “
A Variational Approach to the Theory of the Elastic Behaviour of Multiphase Materials
,”
J. Mech. Phys. Solids
0022-5096,
11
, pp.
127
140
.
8.
Hill
,
R.
, 1965, “
A Self-Consistent Mechanics of Composite Materials
,”
J. Mech. Phys. Solids
0022-5096,
13
, pp.
213
222
.
9.
Ishai
,
O.
, and
Cohen
,
L. J.
, 1967, “
Elastic Properties of Filled and Porous Epoxy Composites
,”
Int. J. Mech. Sci.
0020-7403,
9
, pp.
539
546
.
10.
Kenyon
,
A. S.
, and
Duffey
,
H. J.
, 1967, “
Properties of a Particulate-Filled Polymer
,”
Polym. Eng. Sci.
0032-3888,
7
, pp.
189
193
.
11.
Smith
,
J. C.
, 1976, “
Experimental Values for Elastic-Constants of a Particulate-Filled Glassy Polymer
,”
J. Res. Natl. Bur. Stand., Sect. A
0022-4332,
80
, pp.
45
49
.
12.
Smith
,
J. C.
, 1976, “
Elastic-Constants of a Particulate-Filled Glassy Polymer—Comparison of Experimental Values With Theoretical Predictions
,”
Polym. Eng. Sci.
0032-3888,
16
, pp.
394
399
.
13.
Richard
,
T. G.
, 1975, “
Mechanical-Behavior of a Solid Microsphere Filled Composite
,”
J. Compos Mater.
,
9
, pp.
108
113
.
14.
Cipra
,
B.
, 1998, “
Mathematics—Packing Challenge Mastered at Last
,”
Science
0036-8075,
281
, p.
1267
.
15.
Jaeger
,
H. M.
, and
Nagel
,
S. R.
, 1992, “
Physics of the Granular State
,”
Science
0036-8075,
255
, pp.
1523
1531
.
16.
Hertz
,
P.
, 1909, “
Concerning the Average Mutual Distance Between Points, Which Are Represented in Space With a Common Density
,”
Math. Ann.
0025-5831,
67
, pp.
387
398
.
17.
Metropolis
,
N.
,
Rosenbluth
,
A. W.
,
Rosenbluth
,
M. N.
,
Teller
,
A. H.
, and
Teller
,
E.
, 1953, “
Equation of State Calculations by Fast Computing Machines
,”
J. Chem. Phys.
0021-9606,
21
, pp.
1087
1092
.
18.
Talbot
,
J.
, and
Schaaf
,
P.
, 1989, “
Random Sequential Adsorption of Mixtures
,”
Phys. Rev. A
1050-2947,
40
, pp.
422
427
.
19.
Tewari
,
A.
, and
Gokhale
,
A. M.
, 2004, “
Nearest-Neighbor Distances Between Particles of Finite Size in Three-Dimensional Uniform Random Microstructures
,”
Mater. Sci. Eng., A
0921-5093,
85
, pp.
332
341
.
20.
Tan
,
H.
,
Huang
,
Y.
,
Liu
,
C.
, and
Geubelle
,
P. H.
, 2005, “
The Mori-Tanaka Method for Composite Materials With Nonlinear Interface Debonding
,”
Int. J. Plast.
0749-6419,
21
, pp.
1890
1918
.
21.
Rintoul
,
M. D.
, and
Torquato
,
S.
, 1997, “
Reconstruction of the Structure of Dispersions
,”
J. Colloid Interface Sci.
0021-9797,
186
, pp.
467
476
.
22.
Segurado
,
J.
, and
Llorca
,
J.
, 2002, “
A Numerical Approximation to the Elastic Properties of Sphere-Reinforced Composites
,”
J. Mech. Phys. Solids
0022-5096,
50
, pp.
2107
2121
.
23.
PYTHON
, 2005, “
PYTHON Documentation, Release 2.3.5
,” http://www.python.org/doc/http://www.python.org/doc/
24.
Lutz
,
M.
, 1996, “
Programming PYTHON
,”
O’Reilly
,
Sebastopol, CA
.
25.
Matsumoto
,
M.
, and
Nishimura
,
T.
, 1998, “
Mersenne Twister: A 623-Dimensionally Equidistributed Uniform Pseudorandom Number Generator
,”
ACM Trans. Model. Comput. Simul.
1049-3301,
8
, pp.
3
30
.
26.
Zohdi
,
T. I.
, 2004, “
Homogenization Methods and Multiscale Modeling
,”
Encyclopedia of Computational Mechanics
, Vol.
2
,
R.
Stein
,
R.
de Borst
, and
T. J. R.
Hughes
, eds.,
Wiley
,
New York
, pp.
407
430
.
27.
Bathe
,
K. -J.
, 1996,
Finite Element Procedure
,
Prentice-Hall
,
Upper Saddle River
.
28.
Hughes
,
T. J. R.
, 2000,
The Finite Element Method: Linear Static and Dynamic Finite Element Analysis
,
Dover
,
Mineola, NY
.
29.
Kaliakin
,
V. N.
, 2002,
Introduction to Approximate Solution Techniques, Numerical Modeling and Finite Element Methods
,
Marcel Dekker
,
New York
.
30.
ABAQUS
, 2006,
ABAQUS 6.6 User Subroutines Reference Manual
,
ABAQUS, Inc.
,
Providence, RI
.
31.
ABAQUS
, 2006,
ABAQUS 6.6 Theory Manual
,
ABAQUS, Inc.
,
Providence, RI
.
32.
Cojocaru
,
D.
, and
Karlsson
,
A. M.
, 2008, “
An Object-Oriented Approach for Modeling and Simulation of Crack Growth in Cyclically Loaded Structures
,”
Adv. Eng. Software
0965-9978,
39
, pp.
995
1009
.
You do not currently have access to this content.