This paper discusses cyclic deformation and fatigue behaviors of stainless steel 304L and aluminum 7075-T6. Effects of loading sequence, mean strain or stress, and prestraining were investigated. The behavior of aluminum is shown not to be affected by preloading, whereas the behavior of stainless steel is greatly influenced by prior loading. Mean stress relaxation in strain control and ratcheting in load control and their influence on fatigue life are discussed. Some unusual mean strain test results are presented for SS304L, where in spite of mean stress relaxation fatigue lives were significantly longer than fully-reversed tests. Prestraining indicated no effect on either deformation or fatigue behavior of aluminum, while it induced considerable hardening in SS304L and led to different results on fatigue life, depending on the test control mode. Possible mechanisms for secondary hardening observed in some tests, characterized by a continuous increase in the stress response and leading to runout fatigue life, are also discussed. The Smith–Watson–Topper parameter was shown to correlate most of the experimental data for both materials under different loading conditions.

1.
Jang
,
D. Y.
,
Watkins
,
T. R.
,
Kozaczek
,
K. J.
,
Hubbard
,
C. R.
, and
Cavin
,
O. B.
, 1996, “
Surface Residual Stresses in Machined Austenistic Stainless Steel
,”
Wear
0043-1648,
194
, pp.
168
173
.
2.
Chopra
,
O. K.
, and
Gavenda
,
D. J.
, 1998, “
Effects of LWR Coolant Environments on Fatigue Lives of Austenitic Stainless Steel
,”
ASME J. Pressure Vessel Technol.
0094-9930,
120
, pp.
116
121
.
3.
Haddar
,
N.
, and
Fissolo
,
A.
, 2005, “
2D Simulation of the Initiation and Propagation of Crack Array Under Thermal Fatigue
,”
Nucl. Eng. Des.
0029-5493,
235
, pp.
945
964
.
4.
Taheri
,
S.
, and
Galenne
,
E.
, 2005, “
High-Cycle Thermal Crazing: A Phenomena Related to the Structure
,”
18th International Conference of Structural Mechanics in Reactor Technology (SMiRT 18)
, Beijing, China.
5.
Taheri
,
S.
, and
Taleb
,
L.
, 2007, “
Effect of Over-Hardening on High Cycle Thermal Fatigue of Austenitic Stainless Steel
,”
The 13th International Symposium on Plasticity
, AK.
6.
Taheri
,
S.
, 2007, “
Some Advances on Understanding of High Cycle Thermal Fatigue Crazing
,”
ASME J. Pressure Vessel Technol.
0094-9930,
129
, pp.
400
410
.
7.
Angel
,
T.
, 1954, “
Formation of Martensite in Austenitic Stainless Steel
,”
J. Iron Steel Inst., London
0021-1567,
177
, pp.
165
174
.
8.
Baudry
,
G.
, and
Pineau
,
A.
, 1977, “
Influence of Strain-Induced Martensitic Transformation on the Low-Cycle Fatigue Behavior of a Stainless Steel
,”
Mater. Sci. Eng.
0025-5416,
28
, pp.
229
242
.
9.
Hennessy
,
D.
,
Steckel
,
G.
, and
Altstetter
,
C.
, 1976, “
Phase Transformation of Stainless Steel During Fatigue
,”
Metall. Mater. Trans. A
1073-5623,
7A
, pp.
415
424
.
10.
Lebedev
,
A. A.
, and
Kosarchuk
,
V. V.
, 2000, “
Influence of Phase Transformations on the Mechanical Properties of Austenitic Stainless Steels
,”
Int. J. Plast.
0749-6419,
16
, pp.
749
767
.
11.
Grostabussiat
,
S.
,
Taleb
,
L.
,
Jullien
,
J. F.
, and
Sidoroff
,
F.
, 2001, “
Transformation Induced Plasticity in Martensitic Transformation of Ferrous Alloy
,”
J. Phys. IV
1155-4339,
11
, pp.
173
180
.
12.
Ye
,
D.
,
Matsuoka
,
S.
,
Nagashima
,
N.
, and
Suzuki
,
N.
, 2006, “
The Low-Cycle Fatigue, Deformation and Final Fracture Behaviour of an Austenitic Stainless Steel
,”
Mater. Sci. Eng., A
0921-5093,
415
, pp.
104
117
.
13.
Gerland
,
M.
,
Alain
,
R.
,
Ait Saadi
,
B.
, and
Mendez
,
J.
, 1997, “
Low Cycle Fatigue Behaviour in Vacuum of a 316L-Type Austenitic Stainless Steel Between 20 and 600°C-Part II: Dislocation Structure Evolution and Correlation With Cyclic Behaviour
,”
Mater. Sci. Eng.
0025-5416,
229
, pp.
68
86
.
14.
Alain
,
R.
,
Violan
,
P.
, and
Mendez
,
J.
, 1997, “
Low Cycle Fatigue Behavior in Vacuum of a 316L Type Austenitic Stainless Steel Between 20 and 600°C-Part I: Fatigue Resistance and Cyclic Behavior
,”
Mater. Sci. Eng., A
0921-5093,
A229
, pp.
87
94
.
15.
Lehéricy
,
Y.
, and
Mendez
,
J.
, 2006, “
Effect of Low Cycle Fatigue Damage on the Residual Fatigue Strength of 304L Austenitic Stainless Steel
,”
Ninth International Fatigue Congress
, Atlanta, GA.
16.
Lieurade
,
H. P.
,
Ribes
,
A.
, and
Bollinger
,
E.
, 1986, “
Influence d'un Préécrouissage sur le Comportement d'un Acier Z 2 CND 17-13 (AISI 316 L) en Fatigue Oligocyclique
,”
Mem. Etud. Sci. Rev. Metall
.,
83
, pp.
547
551
.
17.
Topper
,
T. H.
,
Sandor
,
B. I.
, and
Morrow
,
J.
, 1969, “
Cumulative Fatigue Damage Under Cyclic Strain Control
,”
J. Mater.
0022-2453,
4
, pp.
189
199
.
18.
Kang
,
G.
,
Liu
,
Y.
, and
Li
,
Z.
, 2006, “
Experimental Study on Ratchetting-Fatigue Interaction of SS304 Stainless Steel in Uniaxial Cyclic Stress
,”
Mater. Sci. Eng., A
0921-5093,
435–436
, pp.
396
404
.
19.
Stephens
,
R. I.
,
Fatemi
,
A.
,
Stephens
,
R. R.
, and
Fuchs
,
H. O.
, 2000,
Metal Fatigue in Engineering
,
Wiley
,
New York
.
20.
DuQuesnay
,
D. L.
,
Topper
,
T. H.
,
Yu
,
M. T.
, and
Pompetzki
,
M. A.
, 1992, “
The Effective Stress Range as a Mean Stress Parameter
,”
Int. J. Fatigue
0142-1123,
14
, pp.
45
50
.
21.
Smith
,
K. N.
,
Watson
,
P.
, and
Topper
,
T. H.
, 1970, “
A Stress-Strain Function for the Fatigue of Metals
,”
J. Mater.
0022-2453,
5
, pp.
767
778
.
22.
ASTM Standards E606-04, 2007, “
Standard Practice for Strain-Controlled Fatigue Testing
,”
Annual Book of ASTM Standards
, Vol.
03.01
,
American Society for Testing and Materials
,
West Conshohocken, PA
, pp.
656
671
.
23.
ASTM Standards E606-04, 2007, “
Standard Test Methods for Tension Testing of Metallic Materials [Metric]
,”
Annual Book of ASTM Standards
, Vol.
03.01
,
American Society for Testing and Materials
,
West Conshohocken, PA
, pp.
89
113
.
24.
Fatemi
,
A.
,
Plaseied
,
A.
,
Khosrovaneh
,
A. K.
, and
Tanner
,
D.
, 2005, “
Application of Bi-Linear Log-Log S-N Model to Strain-Controlled fatigue Data of Aluminum Alloys and Its Effect on Life Predictions
,”
Int. J. Fatigue
0142-1123,
27
, pp.
1040
1050
.
25.
Le Roux
,
J. C.
,
Taheri
,
S.
,
Sermage
,
J. P.
,
Colin
,
J.
, and
Fatemi
,
A.
, 2008, “
Cyclic Deformation and Fatigue Behaviors of Stainless Steel 304L Including Mean Stress and Pre-Straining Effects
,”
Proceedings of PVP 2008
.
26.
Qian
,
J.
, and
Fatemi
,
A.
, 1995, “
Cyclic Deformation and Fatigue Behaviour of Ion-Nitrided Steel
,”
Int. J. Fatigue
0142-1123,
17
, pp.
15
24
.
27.
Kaleta
,
J.
, and
Zietek
,
G.
, 1998, “
Representation of Cyclic Properties of Austenitic Steels with Plasticity-Induced Martensitic Transformation
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
21
, pp.
955
964
.
28.
Krupp
,
U.
,
Christ
,
H. -J.
,
Lezuo
,
P.
,
Maier
,
H. J.
, and
Teteruk
,
R. G.
, 2001, “
Influence of Carbon Concentration on Martensitic Transformation in Metastable Austenitic Steels Under Cyclic Loading Conditions
,”
Mater. Sci. Eng., A
0921-5093,
319–321
, pp.
527
530
.
29.
Krauss
,
G.
, 2005,
Steels: Processing, Structure, and Performance
,
3rd ed.
,
ASM International
,
Materials Park, OH
, p.
508
.
30.
Nagy
,
E.
,
Mertinger
,
V.
,
Tranta
,
F.
, and
Solyom
,
J.
, 2004, “
Deformation Induced Martensitic Transformation in Stainless Steels
,”
Mater. Sci. Eng., A
0921-5093,
378
, pp.
308
313
.
31.
Mumtaz
,
K.
,
Takahashi
,
S.
,
Echigoya
,
J.
,
Kamada
,
Y.
,
Zhang
,
L. F.
,
Kikuchi
,
H.
,
Ara
,
K.
, and
Sato
,
M.
, 2004, “
Magnetic Measurement of Martensitic Transformation in Austenitic Stainless Steel After Room Temperature Rolling
,”
J. Mater. Sci.
0022-2461,
39
, pp.
85
97
.
32.
Fatemi
,
A.
, and
Socie
,
D. F.
, 1988, “
A Critical Plane Approach to Multiaxial Fatigue Damage Including Out-of-Phase Loading
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
11
, pp.
149
165
.
You do not currently have access to this content.