There is considerable worldwide interest in magnesium (Mg) sheet as a replacement for heavier steel and aluminum alloys in vehicle closure components. As Mg gains acceptance in the automotive industry, there will be an increasing demand for accurate material properties for finite element simulations of Mg structures. In this paper, we investigate the extent to which average grain size and postformed tensile properties vary across a Mg AZ31B hood inner component formed at 485°C for 20 min under a constant gas pressure. Tensile specimens were extracted from six regions of the hood inner, which underwent varying degrees of thinning. A state-of-the-art digital image correlation (DIC) algorithm and custom image acquisition software provided true stress-true strain data for each specimen. Tensile data acquired during room temperature testing was compared with that from baseline (undeformed) Mg AZ31B in a fully recrystallized condition (O-temper). Due to its importance in finite element simulations, particular emphasis was placed on the variation of postformed yield strength with specimen thickness and average grain size. Finally, we compute local strain fields during fracture in a tensile specimen with DIC grids positioned in the failure region.

1.
Taub
,
A. I.
,
Krajewski
,
P. E.
,
Luo
,
A. A.
, and
Owens
,
J. N.
, 2007, “
The Evolution of Technology for Materials Processing Over the Last 50 Years: The Automotive Example
,”
JOM
1047-4838,
59
, pp.
48
57
.
2.
Mordike
,
B. L.
, and
Ebert
,
T.
, 2001, “
Magnesium: Properties—Applications—Potential
,”
Mater. Sci. Eng., A
0921-5093,
302
, pp.
37
45
.
3.
Krajewski
,
P. E.
,
Kim
,
S.
,
Carter
,
J. T.
, and
Verma
,
R.
, 2007, “
Magnesium Sheet: Automotive Applications and Future Opportunities
,”
Trends in Metals and Materials Engineering, KIM: Korean Institute of Metals
,
20
, pp.
60
68
.
4.
Proust
,
G.
,
Tomé
,
C. N.
,
Jain
,
A.
, and
Agnew
,
S. R.
, 2009, “
Modeling the Effect of Twinning and Detwinning During Strain-Path Changes of Magnesium Alloy AZ31
,”
Int. J. Plast.
0749-6419,
25
, pp.
861
880
.
5.
Li
,
D. Y.
,
Chang
,
Q. F.
,
Peng
,
Y. H.
, and
Zeng
,
X. Q.
, 2007, “
Thermo-Mechanical Coupled Simulation of Warm Stamping of AZ31 Magnesium Alloy Sheet
,”
Mater. Sci. Forum
0255-5476,
546–549
, pp.
281
284
.
6.
Abu-Farha
,
F. K.
, and
Khraisheh
,
M. K.
, 2007, “
Analysis of Superplastic Deformation of AZ31 Magnesium Alloy
,”
Adv. Eng. Mater.
1438-1656,
9
, pp.
777
783
.
7.
Krajewski
,
P.
, and
Schroth
,
J. G.
, 2007, “
Overview of Quick Plastic Forming Technology
,”
Mater. Sci. Forum
0255-5476,
551–552
, pp.
3
12
.
8.
Krajewski
,
P. E.
, and
Montgomery
,
P. E.
, Jr.
, 2004,
Advances in Superplasticity and Superplastic Forming
,
E. M.
Taleff
,
P. A.
Friedman
,
P. E.
Krajewski
,
R. S.
Mishra
, and
J. G.
Schroth
, eds.,
TMS
,
Warrendale, PA
, pp.
85
94
.
9.
Verma
,
R.
, and
Carter
,
J. T.
, 2006, “
Quick Plastic Forming of a Decklid Inner Panel With Commercial AZ31 Mg Sheet
,” SAE Paper No. 2006-01-0525.
10.
Marya
,
M.
,
Hector
,
L. G.
,
Verma
,
R.
, and
Tong
,
W.
, 2006, “
Microstructural Effects of AZ31 Magnesium Alloy on its Tensile Deformation and Failure Behaviors
,”
Mater. Sci. Eng., A
0921-5093,
418
, pp.
341
356
.
11.
Wagoner
,
R. H.
,
Lou
,
X. Y.
,
Li
,
M.
, and
Agnew
,
S. R.
, 2006, “
Forming Behavior of Magnesium Sheet
,”
J. Mater. Process. Technol.
0924-0136,
177
, pp.
483
485
.
12.
Zhang
,
K. F.
,
Yin
,
D. L.
, and
Wu
,
D. Z.
, 2006, “
Formability of AZ31 Magnesium Alloy Sheets at Warm Working Conditions
,”
Int. J. Mach. Tools Manuf.
0890-6955,
46
, pp.
1276
1280
.
13.
del Valle
,
J. A.
,
Pérez-Prado
,
M. T.
, and
Ruano
,
O. A.
, 2005, “
Deformation Mechanisms Responsible for the High Ductility in a Mg AZ31 Alloy Analyzed by Electron Backscattered Diffraction
,”
Metall. Mater. Trans. A
1073-5623,
36
, pp.
1427
1438
.
14.
Jäger
,
A.
,
Lukáč
,
P.
,
Gärtnerová
,
V.
,
Bohlen
,
J.
, and
Kainer
,
K. U.
, 2004, “
Tensile Properties of Hot Rolled AZ31 Mg Alloy Sheets at Elevated Temperatures
,”
J. Alloys Compd.
0925-8388,
378
, pp.
184
187
.
15.
Hsu
,
E.
,
Szpunar
,
J. A.
, and
Verma
,
R.
, 2006, “
Effect of Temperature and Strain Rate on Formability of Magnesium AZ31 Sheet
,” SAE Paper No. 2006-01-0258.
16.
Allison
,
J.
,
Backman
,
D.
, and
Christodoulou
,
L.
, 2006, “
Integrated Computational Materials Engineering: A New Paradigm for the Global Materials Profession
,”
JOM
1047-4838,
58
, pp.
25
27
.
17.
Lee
,
S.
,
Chen
,
Y. H.
, and
Wang
,
J. Y.
, 2002, “
Isothermal Sheet Formability of Magnesium Alloy AZ31 and AZ61
,”
J. Mater. Process. Technol.
0924-0136,
124
, pp.
19
24
.
18.
Jain
,
A.
, and
Agnew
,
S. R.
, 2007, “
Modeling the Temperature Dependent Effect of Twinning on the Behavior of Magnesium Alloy AZ31B Sheet
,”
Mater. Sci. Eng., A
0921-5093,
462
, pp.
29
36
.
19.
Somekawa
,
H.
, and
Mukai
,
T.
, 2006, “
Fracture Toughness in a Rolled AZ31 Magnesium Alloy
,”
J. Alloys Compd.
0925-8388,
417
, pp.
209
213
.
20.
Nan
,
Z.
,
Ishihara
,
S.
,
Goshima
,
T.
, and
Nakanishi
,
R.
, 2004, “
On the Sharp Bend in the S-N Curve of the AZ21 Extruded Magnesium Alloy
,”
Proceedings of the 15th European Conference of Fracture
, ECF, pp.
1
8
.
21.
Čížek
,
L.
,
Greger
,
M.
,
Pawlica
,
L.
,
Dobrzański
,
L. A.
, and
Tański
,
T.
, 2004, “
Study of Selected Properties of Magnesium Alloy AZ91 After Heat Treatment and Forming
,”
J. Mater. Process. Technol.
0924-0136,
157–158
, pp.
466
471
.
22.
Savic
,
V.
,
Hector
,
L. G.
, Jr.
, and
Fekete
,
J. R.
, 2010, “
Digital Image Correlation Study of Plastic Deformation and Fracture in Fully Martensitic Steels
,”
Exp. Mech.
0014-4851,
50
(
1
), pp.
99
110
.
23.
Abu-Farha
,
F. K.
, and
Khraisheh
,
M. K.
, 2007, “
Mechanical Characteristics of Superplastic Deformation of AZ31 Magnesium Alloy
,”
J. Mater. Eng. Perform.
1059-9495,
16
, pp.
192
199
.
25.
Zavattieri
,
P. D.
,
Savic
,
V.
,
Hector
,
L. G.
, Jr.
,
Fekete
,
J. R.
,
Tong
,
W.
, and
Xuan
,
Y.
, 2009, “
Spatio-Temporal Characteristics of the Portevin–Le Châtelier Effect in Austenitic Steel With Twinning Induced Plasticity
,”
Int. J. Plast.
0749-6419,
25
(
12
), pp.
2298
2330
.
27.
Tong
,
W.
, 2005, “
An Evaluation of Digital Image Correlation Criteria for Strain Mapping Applications
,”
Strain
,
41
, pp.
167
175
. 0039-2103
28.
Smith
,
B. W.
,
Li
,
M.
, and
Tong
,
W.
, 1998, “
Error Assessment for Strain Mapping by Digital Image Correlation
,”
Exp. Tech.
0732-8818,
22
, pp.
19
21
.
29.
Tong
,
W.
, 2004, “
A User’s Guide to the Yale Surface Deformation Mapping Program (SDMAP)
,” Yale University Technical Report.
30.
Tong
,
W.
, and
Li
,
X.
, 1999, “
Evaluation of Two Plastic Strain Mapping Methods
,”
Proceedings of the SEM Annual Conference on Theoretical, Experimental and Computational Mechanics
, pp.
23
26
.
31.
Sutton
,
M. A.
,
McNeill
,
S. R.
,
Jang
,
J.
, and
Babai
,
M.
, 1988, “
Effects of Subpixel Image Restoration on Digital Correlation Error Estimates
,”
Opt. Eng.
0091-3286,
27
, pp.
870
877
.
32.
Bruck
,
H. A.
,
McNeill
,
S. R.
,
Sutton
,
M. A.
, and
Peters
,
W. H.
, III
, 1989, “
Digital Image Correlation Using Newton-Raphson Method of Partial Differential Correction
,”
Exp. Mech.
0014-4851,
29
, pp.
261
267
.
33.
Vendroux
,
G.
, and
Knauss
,
W. G.
, 1998, “
Submicron Deformation Field Measurements: Part 2. Improved Digital Image Correlation
,”
Exp. Mech.
0014-4851,
38
, pp.
86
92
.
34.
Tong
,
W.
,
Tao
,
H.
,
Zhang
,
N.
,
Jiang
,
X.
,
Marya
,
M. P.
,
Hector
,
L. G.
, Jr.
, and
Gayden
,
X. Q.
, 2005, “
Deformation and Fracture of Miniature Tensile Bars With Resistance-Spot-Weld Microstructures
,”
Metall. Mater. Trans. A
1073-5623,
36
, pp.
2651
2669
.
35.
Tong
,
W.
,
Hong
,
T.
,
Zhang
,
N.
, and
Hector
,
L. G.
, Jr.
, 2005, “
Time-Resolved Strain Mapping Measurements of Individual Portevin–Le Chatelier Deformation Bands
,”
Scr. Mater.
1359-6462,
53
, pp.
87
92
.
36.
Hector
,
L. G.
, Jr.
,
Lai
,
Y. H.
,
Tong
,
W.
, and
Lukitsch
,
M. J.
, 2007, “
Strain Accumulation in Polymer Electrolyte Membrane and Membrane Electrode Assembly Materials During a Single Hydration/Dehydration Cycle
,”
ASME J. Fuel Cell Sci. Technol.
1550-624X,
4
, pp.
19
28
.
37.
Tong
,
W.
, and
Zhang
,
N.
, 2001, “
An Experimental Investigaton of Necking in Thin Sheets
,”
Proceedings of the ASME Manufacturing Engineering Division
MED, Vol.
12
, pp.
231
238
.
38.
Carter
,
J. T.
,
Verma
,
R.
, and
Krajewski
,
P. E.
, 2008,
Magnesium Technology 2008
,
M.
Pekguleryuz
,
N. R.
Neelameggham
,
R. S.
Beals
, and
E. A.
Nyberg
, eds.,
TMS
,
Warrendale, PA
, pp.
69
74
.
39.
Barnett
,
M. R.
,
Atwell
,
D.
, and
Beer
,
A.
, 2004, “
Effect of Grain Size on the Deformation and Dynamic Recrystallization of Mg-3Al-1Zn
,”
Mater. Sci. Forum
0255-5476,
467–470
, pp.
435
440
.
40.
Liang
,
S.
,
Sun
,
H.
,
Liu
,
Z.
, and
Wang
,
E.
, 2009, “
Mechanical Properties and Texture Evolution During Rolling Process of an AZ31 Mg Alloy
,”
J. Alloys Compd.
0925-8388,
472
, pp.
127
132
.
41.
Bohlen
,
J.
,
Nürnberg
,
M. R.
,
Senn
,
J. W.
,
Letzig
,
D.
, and
Agnew
,
S. R.
, 2007, “
The Texture and Anisotropy of Magnesium—Zinc—Rare Earth Alloy Sheets
,”
Acta Mater.
1359-6454,
55
, pp.
2101
2112
.
42.
Agnew
,
S. R.
, and
Özgür
,
D.
, 2005, “
Plastic Anisotropy and the Role of Non-Basal Slip in Magnesium Alloy AZ31B
,”
Int. J. Plast.
0749-6419,
21
, pp.
1161
1193
.
43.
Gurson
,
A. L.
, 1977, “
Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part 1. Yield Criteria and Flow Rules for Porous Ductile Media
,”
ASME J. Eng. Mater. Technol.
0094-4289,
99
, pp.
2
15
.
44.
Tvergaard
,
V.
, and
Needleman
,
A.
, 1984, “
Analysis of the Cup-Cone Fracture in a Round Tensile Bar
,”
Acta Metall.
0001-6160,
32
, pp.
157
169
.
45.
Zavattieri
,
P. D.
,
Hector
,
L. G.
, Jr.
, and
Bower
,
A. F.
, 2008, “
Cohesive Zone Simulations of Crack Growth Along a Rough Interface Between Two Elastic–Plastic Solids
,”
Eng. Fract. Mech.
0013-7944,
75
, pp.
4309
4332
.
You do not currently have access to this content.