This paper is concerned with a novel elasto-plastic reformulation of the Theory of Critical Distances (TCD) specifically devised to estimate lifetime of notched metallic materials (ferrous and nonferrous) failing in the low/medium-cycle fatigue regime. We used the classic Manson–Coffin and Smith–Topper–Watson approaches, but applied in conjunction with the TCD. We assumed that the material’s critical distance is a constant whose value does not depend on either the sharpness of the notch or on the number of cycles to failure. The accuracy and reliability of the proposed approach was checked by using a number of experimental results generated by testing cylindrical specimens made of En3B, which is a commercial low-carbon steel, and Al6082, which is a conventional aluminum alloy, containing different geometrical features and tested at applied load ratios of R=1 and R=0. The resulting predictions of fatigue life were highly accurate, giving estimates falling within an error factor (in lifetime) of about 2. This result is undoubtedly encouraging, especially in light of the fact that the pieces of experimental information needed to calibrate our method can easily be generated by using standard testing equipment, and the necessary stress/strain fields acting on the fatigue process zone can be determined by directly postprocessing elasto-plastic finite element results.

1.
Neuber
,
H.
, 1958,
Theory of Notch Stresses: Principles for Exact Calculation of Strength With Reference to Structural Form and Material
, 2nd ed.,
Springer-Verlag
,
Berlin
.
2.
Peterson
,
R. E.
, 1959, “
Notch Sensitivity
,”
Metal Fatigue
,
G.
Sines
and
J. L.
Waisman
, eds.,
McGraw Hill
,
New York
, pp.
293
306
.
3.
Taylor
,
D.
, 2007,
The Theory of Critical Distances: A New Perspective in Fracture Mechanics
,
Elsevier
,
Oxford, UK
.
4.
Susmel
,
L.
, 2009,
Multiaxial Notch Fatigue: From Nominal to Local Stress-Strain Quantities
,
Woodhead
,
Cambridge, UK
.
5.
Susmel
,
L.
, and
Taylor
,
D.
, 2008, “
On the Use of the Theory of Critical Distances to Predict Static Failures in Ductile Metallic Materials Containing Different Geometrical Features
,”
Eng. Fract. Mech.
0013-7944,
75
, pp.
4410
4421
.
6.
Susmel
,
L.
, and
Taylor
,
D.
, 2007, “
A Novel Formulation of the Theory of Critical Distances to Estimate Lifetime of Notched Components in the Medium-Cycle Fatigue Regime
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
30
(
7
), pp.
567
581
.
7.
Susmel
,
L.
, and
Taylor
,
D.
, 2008, “
The Modified Wöhler Curve Method Applied Along With the Theory of Critical Distances to Estimate Finite Life of Notched Components Subjected to Complex Multiaxial Loading Paths
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
31
(
12
), pp.
1047
1064
.
8.
Dowling
,
N. E.
, 1993,
Mechanical Behaviour of Materials
,
Prentice-Hall
,
New York
.
9.
Coffin
,
L. F.
, 1954, “
A Study of the Effects of Cyclic Thermal Stresses on a Ductile Metal
,”
Trans. ASME
0097-6822,
76
, pp.
931
950
.
10.
Manson
,
S. S.
, 1953, “
Behaviour of Materials Under Conditions of Thermal Stress
,”
National Advisory Committee for Aeronautics
, Report No. NACA TN-2933.
11.
Morrow
,
J. D.
, 1965, “
Cyclic Plastic Strain Energy and Fatigue of Metals
,”
ASTM Spec. Tech. Publ.
0066-0558,
378
, pp.
45
87
.
12.
Smith
,
K. N.
,
Watson
,
P.
, and
Topper
,
T. H.
, 1970, “
A Stress-Strain Function for the Fatigue of Metal
,”
J. Mater.
0022-2453,
5
, pp.
767
778
.
13.
Neuber
,
H.
, 1961, “
Theory of Stress Concentration for Shear-Strained Prismatical Bodies With Arbitrary Nonlinear Stress-Strain Law
,”
ASME J. Appl. Mech.
0021-8936,
28
, pp.
544
50
.
14.
Glinka
,
G.
, 1985, “
Energy Density Approach to Calculation of Inelastic Strain-Stress Near Notches and Cracks
,”
Eng. Fract. Mech.
0013-7944,
22
(
3
), pp.
485
508
.
15.
James
,
M. N.
,
Dimitriou
,
C.
, and
Chandler
,
D.
, 1989, “
Low Cycle Fatigue Lives of Notched Components
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
12
(
3
), pp.
213
225
.
16.
Shatil
,
G.
,
Ellison
,
E. G.
, and
Smith
,
D. J.
, 1995, “
Elastic-Plastic Behaviour and Uniaxial Low Cycle Fatigue Life of Notched Specimens
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
18
(
2
), pp.
235
245
.
17.
Fatemi
,
A.
,
Zeng
,
Z.
, and
Plaseied
,
A.
, 2004, “
Fatigue Behavior and Life Predictions of Notched Specimens Made of QT and Forged Microalloyed Steels
,”
Int. J. Fatigue
0142-1123,
26
, pp.
663
672
.
18.
Eleiche
,
A. M.
,
Megahedb
,
M. M.
, and
Abd-Allahc
,
N. M.
, 2006, “
Low-Cycle Fatigue in Rotating Cantilever Under Bending. III: Experimental Investigations on Notched Specimens
,”
Int. J. Fatigue
0142-1123,
28
, pp.
271
280
.
19.
Lin
,
C. -K.
, and
Chu
,
C. -C.
, 2000, “
Mean Stress Effects on Low-Cycle Fatigue for a Precipitation-Hardening Martensitic Stainless Steel in Different Tempers
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
23
, pp.
545
553
.
20.
1998, “
Standard Practice for Strain-Controlled Fatigue Testing
,”
American Society for Testing and Materials
, Paper No. ASTM E606.
21.
Deng
,
X.
,
Rosakis
,
A. J.
, and
Krishnaswamy
,
S.
, 1994, “
Dynamic Crack Propagation in Elastic-Plastic Solids Under Non-K-Dominance Conditions
,”
Eur. J. Mech. A, Solids
,
1994
(
13
), pp.
327
350
.
22.
Taylor
,
D.
, and
Kasiri
,
S.
, 2008, “
A Comparison of Critical Distance Methods for Fracture Prediction
,”
Int. J. Mech. Sci.
0020-7403,
50
, pp.
1075
1081
.
23.
Taylor
,
D.
,
Cornetti
,
P.
, and
Pugno
,
N.
, 2005, “
The Fracture Mechanics of Finite Crack Extension
,”
Eng. Fract. Mech.
0013-7944,
72
, pp.
1021
1038
.
24.
McClintock
,
F. A.
, 1958, “
Ductile Fracture Instability in Shear
,”
ASME J. Appl. Mech.
0021-8936,
25
, pp.
582
588
.
25.
Bentachfine
,
S.
,
Pluvinage
,
G.
,
Gilgert
,
J.
,
Azari
,
Z.
, and
Bouami
,
D.
, 1999, “
Notch Effect in Low Cycle Fatigue
,”
Int. J. Fatigue
0142-1123,
21
, pp.
421
430
.
26.
Qylafku
,
G.
,
Azari
,
Z.
,
Kadi
,
N.
,
Gjonaj
,
M.
, and
Pluvinage
,
G.
, 1999, “
Application of a New Model Proposal for Fatigue Life Prediction on Notches and Key-Seats
,”
Int. J. Fatigue
0142-1123,
21
, pp.
753
760
.
27.
Qilafku
,
G.
,
Kadi
,
N.
,
Dobranski
,
J.
,
Azari
,
Z.
,
Gjonaj
,
M.
, and
Pluvinage
,
G.
, 2001, “
Fatigue of Specimens Subjected to Combined Loading. Role of Hydrostatic Pressure
,”
Int. J. Fatigue
0142-1123,
23
, pp.
689
701
.
You do not currently have access to this content.