Many rubber products are reinforced with glass fibers to give dimensional stability, high modulus, and good fatigue life. To understand failure of these products, it is essential to understand the failure and strength degradation mechanisms of the reinforcing glass multifilament bundles. An empirical model has been developed to predict fast fracture and time-dependent failure of these bundles using the global load sharing approximation. The model is based on the statistical strength distribution of glass fibers, fracture mechanics of glass, and nonlinear stress distribution between individual fibers owing to sliding resistance of matrix. The model was also used to predict the residual strength of the bundle as a function of load and time.
1.
Reifsnider
, K. L.
, 1994, “Modelling of the Interphase in Polymer-Matrix Composite Material Systems
,” Composites
0010-4361, 25
, pp. 461
–469
.2.
Chateauminois
, A.
, 2000, Interactions Between Moisture and Flexural Fatigue Damage in Unidirectional Glass/Epoxy Composites
, Recent Developments in Durability Analysis of Composite Systems
, H.
Fukuda
, F. H.
Cardon
, G.
Verchery
, and K. L.
Reifsnider
, eds., Balkema
, Rotterdam
, pp. 159
–167
.3.
Rosen
, B. W.
, 1964, “Tensile Failure of Fibrous Composites
,” AIAA J.
0001-1452, 2
, pp. 1985
–1991
.4.
Rosen
, B. W.
, 1965, Fibre Composite Material, Metal Park
, ASM
, OH
.5.
Rosen
, B. W.
, 1970, “Thermomechanical Properties of Fibrous Composites
,” Proc. R. Soc. London
0370-1662, 319
, pp. 79
–94
.6.
Zweben
, C.
, 1968, “Tensile Failure of Fiber Composites
,” AIAA J.
0001-1452, 6
, pp. 2375
–2331
.7.
Zweben
, C.
, and Rosen
, B. W.
, 1970, “A Statistical Theory of Material Strength With Application to Composite Materials
,” J. Mech. Phys. Solids
0022-5096, 18
, pp. 189
–206
.8.
Batdorf
, S. B.
, 1982, “Tensile Strengh of Unidirectionally Reinforced Composites—I
,” J. Reinf. Plast. Compos.
0731-6844, 1
, pp. 153
–164
.9.
Batdorf
, S. B.
, and Ghaffarian
, R.
, 1982, “Tensile Strength of Unidirectionally Reinforced Composites—II
,” J. Reinf. Plast. Compos.
0731-6844, 1
, pp. 165
–176
.10.
Iyegnar
, N.
, and Curtin
, W. A.
, 1997, “Time Dependent Failure in Fiber-Reinforced Composites by Matrix Creep and Interfacial Shear
,” Acta Mater.
1359-6454, 12
, pp. 1489
–3429
.11.
Iyegnar
, N.
, and Curtin
, W. A.
, 1997, Proceedings of the Symposium on Brittle Matrix Composites 5
, A. M.
Brandt
, V. C.
Li
, and I. H.
Marshall
, eds., BIGRAF and Woodhead
, Warsaw
.12.
Bandorawalla
, T.
, (2002), “Micromechanics-Based Strength and Lifetime Prediction of Polymer Composites
,” Ph.D. thesis, Virginia Polytechnic Institute and State University, VA.13.
Gao
, Z.
, and Reifsnider
, K. L.
, 1993, Composite Materials: Fatigue and Fracture
, ASTM
, Philadelphia, PA
, pp. 453
–472
.14.
Zhou
, S. J.
, and Curtin
, W. A.
, 1995, “Failure of Fiber Composites: A Lattice Green Function Model
,” Acta Metall. Mater.
0956-7151, 43
, pp. 3093
–3104
.15.
Okabe
, T.
, Takeda
, N.
, Kamoshida
, Y.
, Shimizu
, M.
, and Curtin
, W. A.
, 2001, “A 3D Shear-Lag Model Considering Micro-Damage and Statistical Strength Prediction of Unidirectional Fiber-Reinforced Composites
,” Compos. Sci. Technol.
0266-3538, 61
, pp. 1773
–1787
.16.
Khennane
, A.
, and Melchers
, R. E.
, 2003, “Durability of Glass Polymer Composites Subject to Stress Corrosion
,” J. Compos. Constr.
1090-0268, 7
, pp. 109
–117
.17.
Weibull
, W. A.
, 1951, “A Statistical Distribution Function of Wide Applicability
,” ASME J. Appl. Mech.
0021-8936, 18
, pp. 293
–297
.18.
Charles
, R. J.
, 1958, “Static Fatigue of Glass. I
,” J. Appl. Phys.
0021-8979, 29
, pp. 1549
–1553
.19.
Charles
, R. J.
, 1958, “Static Fatigue of Glass. II
,” J. Appl. Phys.
0021-8979, 29
, pp. 1554
–1560
.20.
Rana
, M. A.
, and Douglas
, R. W.
, 1961, “Reaction Between Glass and Water: Part II
,” Phys. Chem. Glasses
0031-9090, 2
, pp. 196
–205
.21.
Charles
, R. J.
, and Hillig
, W. B.
, 1962, Proceedings of the Symposium on Mechanical Strength of Glass and Ways of Improving It
, USCV
, Charleroi, Belgium
.22.
Wiederhorn
, S. M.
, 1967, “Influence of Water Vapor on Crack Propagation in Soda-Lime Glass
,” J. Am. Ceram. Soc.
0002-7820, 50
, pp. 407
–414
.23.
Cameron
, N. M.
, 1968, “The Effect of Environment and Temperature on the Strength of E-Glass Fibres: Part 1: High Vacuum and Low Temperature
,” Glass Technol.
0017-1050, 9
, pp. 14
–21
.24.
Cameron
, N. M.
, 1968, “The Effect of Environment and Temperature on the Strength of E-Glass Fibres: Part 2: Heating and Ageing
,” Glass Technol.
0017-1050, 9
, pp. 121
–130
.25.
Wiederhorn
, S. M.
, and Bolz
, L. H.
, 1970, “Stress Corrosion and Static Fatigue of Glass
,” J. Am. Ceram. Soc.
0002-7820, 53
, pp. 543
–548
.26.
Metcalfe
, A. G.
, and Schmitz
, G. K.
, 1972, “Mechanism of Stress Corrosion in E-Glass Filaments
,” Glass Technol.
0017-1050, 13
, pp. 5
–16
.27.
Wiederhorn
, S. M.
, 1973, Fracture Mechanics of Ceramics
, R. C.
Bradt
, D. P. H.
Hasselmann
, and F. F.
Lange
, eds., Plenum
, New York
, Vol. 2
, pp. 613
–646
.28.
McKinnis
, C. L.
, 1978, Fracture Mechanics
, R. C.
Bradt
, D. P. H.
Hasselman
, and F. F.
Lange
, eds., Plenum
, New York
, Vol. 4
, p. 581
–596
.29.
Doremus
, R. H.
, 1980, “Modification of the Hillig-Charles Theory for Static Fatigue of Glass
,” Eng. Fract. Mech.
0013-7944, 13
, pp. 945
–953
.30.
Hogg
, P.
, and Hull
, D.
, 1982, “Micromechanisms of Crack Growth in Composite Materials Under Corrosive Environments
,” Meat Sci.
0309-1740, 17
, pp. 441
–449
.31.
Price
, J. N.
, and Hull
, D.
, 1983, “Propagation of Stress Corrosion Cracks in Aligned Glass Fibre Composite Materials
,” J. Mater. Sci.
0022-2461, 18
, pp. 2798
–2810
.32.
Jones
, F. R.
, Rock
, J. W.
, and Wheatley
, A. R.
, 1983, “Stress Corrosion Cracking and its Implications for the Long-Term Durability of E-Glass Fibre Composites
,” Composites
0010-4361, 14
, pp. 262
–269
.33.
Freiman
, S. W.
, 1985, Strength of Inorganic Glass
, C. R.
Kurkjian
, ed., Plenum
, New York
, Vol. 197
.34.
Michalske
, T. A.
, and Bunker
, B. C.
, 1987, “Steric Effects in Stress Corrosion Fracture of Glass
,” J. Am. Ceram. Soc.
0002-7820, 70
, pp. 780
–784
.35.
Lawn
, B. R.
, 1993, Fracture of Brittle Solids
, 2nd ed., Cambridge University Press
, Cambridge, England
36.
Michalske
, T. A.
, 1994, Fractography of Glass
, R. C.
Bradt
and R. E.
Tressler
, eds., Plenum
, New York
, Vol. 111
.37.
Tomozawa
, M.
, 1998, “Stress Corrosion Reaction of Silica Glass and Water
,” Phys. Chem. Glasses
0031-9090, 39
, pp. 65
–69
.38.
Swit
, G.
, 2000, Recent Developments in Durability Analysis of Composite Systems
, A.
Cardon
, H.
Fukuda
, K. L.
Reifsneider
, and G.
Verchery
, eds., Balkema
, Rotterdam
, pp. 473
–476
.39.
Kelly
, A.
, and McCartney
, L. N.
, 1981, “Failure by Stress Corrosion of Bundle of Fibres
,” Proc. R. Soc. London
0370-1662, A344
, pp. 475
–489
.40.
Case
, S. W.
, (1996), “Mechanics of Fiber-Controlled Behavior in Polymeric Composite Materials
,” Ph.D. thesis, Virginia Polytechnic Institute and State University, VA.41.
Robinson
, E. Y.
, 1970, “A Statistical Model for Static Fatigue of Multi-Filament Strands
,” Fibre Sci. Technol.
0015-0568, 2
, pp. 171
–192
.Copyright © 2010
by American Society of Mechanical Engineers
You do not currently have access to this content.