This paper treats approximate solutions for a self-folding problem of carbon nanotubes. It has been observed in the molecular dynamics calculations (Buehler, Kong, Gao, and Huang, 2006, “Self-Folding and Unfolding of Carbon Nanotubes,” ASME J. Eng. Mater. Technol., 128, pp. 3–10) that a carbon nanotube with a large aspect ratio can self-fold due to the van der Waals force between the parts of the same carbon nanotube. The main issue in the self-folding problem is to determine the minimum threshold length of the carbon nanotube at which it becomes possible for the carbon nanotube to self-fold due to the van der Waals force. To the best of the author’s knowledge, no exact solution for this problem has been obtained. In this paper, an approximate mathematical model based on the force method is constructed for the self-folding problem of carbon nanotubes, and is solved exactly as an elastica problem using elliptic functions. Additionally, three other mathematical models are constructed based on the energy method. As a particular example, the lower and upper estimates for the critical threshold (minimum) length are determined based on both methods for the (5,5) armchair carbon nanotube.

1.
Iijima
,
S.
, 1991, “
Helical Microtubules of Graphitic Carbon
,”
Nature (London)
0028-0836,
354
, pp.
56
58
.
2.
Iijima
,
S.
, and
Ichihashi
,
T.
, 1993, “
Single-Shell Carbon Nanotubes of 1-nm Diameter
,”
Nature (London)
0028-0836,
363
, pp.
603
605
.
3.
Buehler
,
M. J.
,
Kong
,
Y.
,
Gao
,
H.
, and
Huang
,
Y.
, 2006, “
Self-Folding and Unfolding of Carbon Nanotubes
,”
ASME J. Eng. Mater. Technol.
0094-4289,
128
, pp.
3
10
.
4.
Falvo
,
M. R.
,
Clary
,
G. J.
,
Taylor
,
R. M.
, II
,
Chi
,
V.
,
Brooks
,
F. R.
, Jr.
,
Washburn
,
S.
, and
Superfine
,
R.
, 1997, “
Bending and Buckling of Carbon Nanotubes Under Large Strain
,”
Nature (London)
0028-0836,
389
, pp.
582
584
.
5.
Lourie
,
O.
,
Cox
,
D. M.
,
Wagner
,
H. D.
, 1998, “
Buckling and Collapse of Embedded Carbon Nanotubes
,”
Phys. Rev. Lett.
0031-9007,
81
(
8
), pp.
1638
1641
.
6.
Ru
,
C. Q.
, 2001, “
Axially Compressed Buckling of Doublewalled Carbon Nanotube Embedded in an Elastic Medium
,”
J. Mech. Phys. Solids
0022-5096,
49
, pp.
1265
1279
.
7.
Wong
,
E. W.
,
Sheehan
,
P. E.
, and
Lieber
,
C. M.
, 1997, “
Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes
,”
Science
0036-8075,
277
, pp.
1971
1975
.
8.
Yakobson
,
B. I.
,
Brabec
,
C. J.
, and
Bernholc
,
J.
, 1996, “
Nanomechanics of Carbon Tubes: Instabilities Beyond Linear Response
,”
Phys. Rev. Lett.
0031-9007,
76
(
14
), pp.
2511
2514
.
9.
Iijima
,
S.
, 1996, “
Structural Flexibility of Carbon Nanotubes
,”
J. Chem. Phys.
0021-9606,
104
(
5
), pp.
2089
2092
.
10.
Woolley
,
A. T.
,
Guillemette
,
C.
,
Cheung
,
C. L.
,
Housman
,
D. E.
, and
Lieber
,
C. M.
, 2000, “
Direct Haplotyping of Kilobase-Size DNA Using Carbon Naotube Probes
,”
Nat. Biotechnol.
1087-0156,
18
, pp.
760
763
.
11.
Zhou
,
W.
,
Huang
,
Y.
,
Liu
,
B.
,
Hwang
,
K. C.
,
Zuo
,
J. M.
,
Buehler
,
M. J.
,
Gao
,
H.
, 2007, “
Self-Folding of Single- and Multiwall Carbon Nanotubes
,”
Appl. Phys. Lett.
0003-6951,
90
, p.
073107
.
12.
Mikata
,
Y.
, 2005, “
Self-Folding of a Large Aspect Carbon Nanotube
,” ASME Paper No. IMECE2005-79953.
13.
Mikata
,
Y.
, 2006, “
Two Approaches to a CNT Self-Folding Problem
,” ASME Paper No. IMECE2006-13386.
14.
Mikata
,
Y.
, 2007, “
CNT Self-Folding in Two Different Geometrical Configurations
,” ASME Paper No. IMECE2007-41582.
15.
Timoshenko
,
S. P.
, and
Gere
,
J. M.
, 1961,
Theory of Elastic Stability
, 2nd ed.,
McGraw-Hill
,
New York
.
16.
Mikata
,
Y.
, 2007, “
Complete Solution of Elastica for a Clamped-Hinged Beam, and Its Applications to a Carbon Nanotube
,”
Acta Mech.
0001-5970,
190
, pp.
133
150
.
17.
Saito
,
R.
,
Dresselhaus
,
G.
, and
Dresselhaus
,
M. S.
, 1998,
Physical Properties of Carbon Nanotubes
,
Imperial College Press
,
London
.
You do not currently have access to this content.