Based on a well established nonincremental interaction law for fully anisotropic elastic-inelastic behavior of polycrystals, tangent formulation-based and simplified interaction laws of softened nature are derived to describe the nonlinear elastic-inelastic behavior of fcc polycrystals. Using the Eshelby’s tensor, the developed approach considers that the inclusion (grain) form is ellipsoidal. It has been clearly demonstrated by Abdul-Latif et al. (2002, “Elastic-Inelastic Self-Consistent Model for Polycrystals,” ASME J. Appl. Mech., 69, pp. 309–316) for spherical inclusion that the tangent formulation-based model requires more calculation time, and is incapable to describe correctly the multiaxial elastic-inelastic behavior of polycrystals in comparison with the simplified model. Hence, the simplified nonincremental interaction is studied considering the grain shape effect. A parametric study is conducted showing principally the influence of the some important parameters (the grain shape (α) and the new viscous parameter γ) and the effect of their interaction on the hardening evolution of polycrystals. Quantitatively, it is recognized that the model describes suitably the grain shape effect together with the new viscous parameter γ on the strain-stress behavior of aluminum and Waspaloy under tensile test.

1.
Sachs
,
G.
, 1928, “
Zur Ableitung einer Fliess Bedingung
,”
Z. Ver. Dtsch. Ing.
0341-7255,
72
, pp.
734
736
.
2.
Taylor
,
G. I.
, 1938, “
Plastic Strain in Metals
,”
J. Inst. Met.
0020-2975,
62
, pp.
307
324
.
3.
Kröner
,
E.
, 1961, “
Zur Plastichen Verformung des Vielkristalls
,”
Acta Metall.
0001-6160,
9
, pp.
155
161
.
4.
Budianski
,
B.
, and
Wu
,
T. T.
, 1962, “
Theoretical Prediction of Plastic Strains of Polycrystals
,”
Proceedings of the Fourth U.S. National Congress of Applied Mechanics
,” ASME, p.
1175
.
5.
Eshelby
,
J. D.
, 1957, “
The Determination of the Elastic Field of the Ellipsoidal Inclusion, and Related Problems
,”
Proc. R. Soc. London, Ser. A
0950-1207,
241
, pp.
376
396
.
6.
Eshelby
,
J. D.
, 1959, “
The Elastic Field Outside an Ellipsoidal Inclusion
,”
Proc. R. Soc. London, Ser. A
0950-1207,
252
, pp.
561
569
.
7.
Hill
,
R.
, 1965, “
Continuum Micro-Mechanical Elastoplastic Polycrystals
,”
J. Mech. Phys. Solids
0022-5096,
13
, pp.
89
101
.
8.
Hutchinson
,
J. W.
, 1970, “
Elastic-Plastic Behaviour of Polycrystalline Metals and Composites
,”
Proc. R. Soc. London, Ser. A
0950-1207,
319
, pp.
247
272
.
9.
Berveiller
,
M.
, and
Zaoui
,
A.
, 1979, “
An Extension of the Self-Consistent Scheme to Plasticity Flowing Polycrystals
,”
J. Mech. Phys. Solids
0022-5096,
26
, pp.
325
344
.
10.
Nemat-Nasser
,
S.
, and
Obata
,
M.
, 1986, “
Rate-Dependent, Finite Elasto-Plastic Deformation of Polycrystals
,”
Proc. R. Soc. London, Ser. A
0950-1207,
407
, pp.
343
375
.
11.
Rougier
,
Y.
,
Stolz
,
C.
, and
Zaoui
,
A.
, 1994, “
Self-Consistent Modeling of Elastic-Viscoplastic Polycrystals
,”
C. R. Acad. Sci. Paris
,
318
(
2
), pp.
145
151
.
12.
Molinari
,
A.
,
Ahzi
,
S.
, and
Kouddane
,
R.
, 1997, “
On the Self-Consistent Modeling of Elasto-Plastic Behavior of Polycrystals
,”
Mech. Mater.
0167-6636,
26
, pp.
43
62
.
13.
Schmitt
,
C.
,
Lipinski
,
P.
, and
Berveiller
,
M.
, 1997, “
Micromechanical Modelling of the Elastoplastic Behavior of Polycrystals Containing Precipitates Application to Hypo-and Hyper-Eutectoid Steel
,”
Int. J. Plast.
0749-6419,
13
, pp.
183
199
.
14.
Abdul-Latif
,
A.
,
Dingli
,
J. Ph.
, and
Saanouni
,
K.
, 2002, “
Elastic-Inelastic Self-Consistent Model for Polycrystals
,”
ASME J. Appl. Mech.
0021-8936,
69
, pp.
309
316
.
15.
Sun
,
L. G.
,
Ju
,
J. W.
, and
Liu
,
H. T.
, 2003, “
Elastoplastic Modeling of Metal Matrix Composites With Evolutionary Particle Debonding
,”
Mech. Mater.
0167-6636,
35
, pp.
559
569
.
16.
Molinari
,
A.
,
Canova
,
G. R.
, and
Ahzi
,
S.
, 1987, “
A Self-Consistent Approach of the Large Deformation Viscoplasticity
,”
Acta Metall.
0001-6160,
35
, pp.
2983
2994
.
17.
Lebensohn
,
R. A.
, and
Tome
,
C. N.
, 1993, “
A Self-Consistent Anisotropic Approach for the Simulation of Plastic Deformation and Texture Development of Polycrystals: Application to Zirconium Alloys
,”
Acta Metall. Mater.
0956-7151,
41
(
9
), pp.
2611
2624
.
18.
Lebensohn
,
R. A.
, and
Tome
,
C. N.
, 1994, “
A Self-Consistent Viscoplastic Model: Prediction of Rolling Textures of Anisotropic Polycrystals
,”
Mater. Sci. Eng., A
0921-5093,
175
, pp.
71
82
.
19.
Weng
,
G. J.
, 1982, “
A Unified Self-Consistent Theory for the Plastic-Creep Deformation of Metals
,”
ASME J. Appl. Mech.
0021-8936,
49
, pp.
728
734
.
20.
Kouddane
,
R.
,
Molinari
,
A.
, and
Canova
,
G. R.
, 1991, “
Self-Consistent Modeling of Heterogeneous Viscoelastic and Elasto-viscoplastic Materials
,” presented at
Mecamat 91
, Fontainebleau, France.
21.
Kouddane
,
R.
,
Molinari
,
A.
, and
Canova
,
G. R.
, 1993, “
Self-Consistent Modeling of Heterogeneous Viscoelastic and Elasto-Viscoplastic Materials
,”
Large Plastic Deformation: Fundamentals and Applications to Metal Forming
,
Mecamat 91
,
C.
Teodosiu
,
J. L.
Raphanel
, and
F.
Sidoroff
, eds.,
Balkema
,
Netherlands
, p.
121
.
22.
Dingli
,
J. P.
,
Abdul-Latif
,
A.
, and
Saanouni
,
K.
, 2000, “
Predictions of the Complex Cyclic Behavior of Polycrystals Using a New Self-Consistent Modeling
,”
Int. J. Plast.
0749-6419,
16
, pp.
411
437
.
23.
Ju
,
J. W.
, and
Sun
,
L. Z.
, 1999, “
A Novel Formulation for the Exterior Point Eshelby's Tensor of an Ellipsoidal Inclusion
,”
ASME J. Appl. Mech.
0021-8936,
66
, pp.
570
574
.
24.
Molinari
,
A. E. L.
,
Houdaigui
,
F.
, and
Toth
,
L. S.
, 2004, “
Validation of Tangent Formulation for the Solution of the Non-Linear Eshelby Inclusion Problem
,”
Int. J. Plast.
0749-6419,
20
, pp.
291
307
.
25.
Abdul-Latif
,
A.
,
Dingli
,
J. -Ph.
, and
Saanouni
,
K.
, 1998, “
Modeling of Complex Cyclic Inelasticity in Heterogeneous Polycrystalline Microstructure
,”
Mech. Mater.
0167-6636,
30
, pp.
287
305
.
26.
Zaoui
,
A.
, and
Raphanel
,
J.
, 1991, “
Investigation of Inter- and Intragranular Plastic Inhomogeneity
,”
Polycrystals, In Modelling the Deformation of Crystalline Solids
,
T. C.
Lowe
,
A. D.
Rollet
,
P. S.
Follansbee
, and
G. S.
Daehn
, eds.,
TMS
,
Warrendale, PA
, p.
51
.
27.
Zaoui
,
A.
, and
Raphanel
,
J.
, 1993, “
On the Nature of the Intergranular Accommodation in the Modelling of Elastoviscoplastic Behaviour of Polycrystalline Aggregate
,”
Large Plastic Deformation: Fundamentals and Applications to Metal Forming
,
Mecamat 91
,
C.
Teodosiu
,
J. L.
Raphanel
, and
F.
Sidoroff
, eds.,
Balkema
,
Netherlands
, p.
185
.
28.
Weng
,
G. J.
, 1993, “
A Self-Consistent Relation for the Time-Dependent Creep of Polycrystals
,”
Int. J. Plast.
0749-6419,
9
, pp.
181
198
.
29.
Radi
,
M.
, 2008, “
Modélisation de l’Effet de la Forme de l’Inclusion sur le Comportement Elasto-Inélastique des Polycristaux Hétérogènes
,” Ph.D. thesis, Université Paris 6, Paris, France.
30.
Saanouni
,
K.
, and
Abdul-Latif
,
A.
, 1996, “
Micromechanical Modeling of Low Cycle Fatigue Under Complex Loadings Part I. Theoretical Formulation
,”
Int. J. Plast.
0749-6419,
12
, pp.
1111
1121
.
31.
Kocks
,
U. F.
, and
Brown
,
T. J.
, 1966, “
Latent Hardening in Aluminum
,”
Acta Metall.
0001-6160,
14
, pp.
87
98
.
32.
Jackson
,
P. J.
, and
Basinski
,
Z. S.
, 1967, “
Latent Hardening and the Flow Stress in Copper Single Crystal
,”
Can. J. Phys.
0008-4204,
45
, pp.
707
735
.
33.
Franciosi
,
P.
, 1978, “
Plasticité à Froid des Monocristaux C.F.C.: Etude du Durcissement Latent
,” Ph.D. thesis, University of Paris XIII, Villetaneuse, France.
34.
Kouddane
,
R.
, 1994, “
Approche Autocohérente en Elastoviscoplasticité des Matériaux Hétérogènes
,” Ph.D. thesis, Université de Metz, Metz, France.
35.
Kouddane
,
R.
,
Zouhal
,
N.
, and
Molinari
,
A.
, 1994, “
Complex Loading of Viscoplastic Materials: Micro-Macro Modelling
,”
Mater. Sci. Eng., A
0921-5093,
175
, pp.
31
36
.
36.
Hill
,
R.
, 1966, “
Generalized Constitutive Relations for Incremental Deformation of Metal Crystals by Multislip
,”
J. Mech. Phys. Solids
0022-5096,
14
, pp.
95
102
.
37.
Mandel
,
J.
, 1965, “
Une Généralisation de la Théorie de la Plasticité de W. T. Koiter
,”
Int. J. Solids Struct.
0020-7683,
1
, pp.
273
295
.
38.
Bui
,
H. D.
, 1969, “
Étude de l’Évolution de la Frontière du Domaine Élastique avec l’Écrouissage et Relations de Comportement Elastoplastique de Métaux Cubiques
,” Ph.D. thesis, Université Paris 6, Paris, France.
39.
Mandel
,
J.
, 1971, “
Plasticité Classique et Viscoplasticité
,”
Cours CISM
,
Springer
,
Udine, Italy
, No. 97.
40.
Bui
,
H. D.
,
Dang Van
,
K.
, and
Stolz
,
C.
, 1982, “
Relations entre Grandeurs Microscopiques et Macroscopiques pour un Solide Anélastique Ayant des Zones Endommagées
,”
C. R. Acad. Sci. Paris
,
294
, pp.
1155
1158
.
41.
Abdul-Latif
,
A.
, 2004, “
Pertinence of the Grains Aggregate Type on the Self-Consistent Model Response
,”
Int. J. Solids Struct.
0020-7683,
41
, pp.
305
322
.
42.
Dirras
,
G.
,
Hocini
,
A.
,
Bui
,
Q. H.
,
Ramtani
,
S.
, and
Abdul-Latif
,
A.
, 2007, “
Comportement Mécanique de Nano Poudres Métalliques Consolidées et Impactées à Vitesse Intermédiaire
,”
18th Congres Français de Mécanique
, Grenoble, France, Aug. 27–31.
43.
Dempster
,
I.
,
Cao
,
W. -D.
,
Kennedy
,
R.
,
Bond
,
B.
,
Aurrecoechea
,
J.
, and
Mark Lipschutz
,
M.
, 2005, “
Structure and Property Comparison of ALLVAC® 718PLUS™ Alloy and Waspaloy Forgings
,”
Superalloys 718, 625, 706 and Derivatives
,
E. A.
Loria
, ed.,
TMS
,
Warrendale, PA
.
44.
Abdul-Latif
,
A.
,
Dirras
,
G. F.
,
Ramtani
,
S.
,
Hocini
,
A.
, and
Bui
,
H. -Q.
, 2008, “
A New Concept for Producing Ultrafine Grained Metallic Structures: Experiments and Modeling
,”
Int. J. Mech. Sci.
0020-7403, submitted.
45.
Abdul-Latif
,
A.
,
Ferney
,
V.
, and
Saanouni
,
K.
, 1999, “
Fatigue Damage of Waspaloy Under Complex Loading
,”
ASME J. Eng. Mater. Technol.
0094-4289,
121
, pp.
278
285
.
46.
Abdul-Latif
,
A.
, and
Chadli
,
M.
, 2007, “
Modeling of the Heterogeneous Damage Evolution at the Granular Scale in Polycrystals Under Complex Cyclic Loadings
,”
Int. J. Damage Mech.
1056-7895,
16
, pp.
133
158
.
You do not currently have access to this content.