Modern computational methods have proved invaluable for the design and analysis of structural components using lightweight materials. The challenge of optimizing lightweight materials in the design of industrial components relates to incorporating structure-property relationships within the computational strategy to incur robust designs. One effective methodology of incorporating structure-property relationships within a simulation-based design framework is to employ a hierarchical multiscale modeling strategy. This paper reviews techniques of multiscale modeling to predict the mechanical behavior of amorphous polymers. Hierarchical multiscale methods bridge nanoscale mechanisms to the macroscale/continuum by introducing a set of structure-property relationships. This review discusses the current state of the art and challenges for three distinct scales: quantum, atomistic/coarse graining, and continuum mechanics. For each scale, we review the modeling techniques and tools, as well as discuss important recent contributions. To help focus the review, we have mainly considered research devoted to amorphous polymers.

1.
De Pablo
,
J. J.
, and
Curtin
,
W. A.
, 2007, “
Multiscale Modeling in Advanced Materials Research
,”
MRS Bull.
0883-7694,
32
(
11
), pp.
905
911
.
2.
Horstemeyer
,
M. F.
, 2001, “
From Atoms to Autos: Part 1 Monotonic Modeling
,” Sandia National Laboratories, Report No. SAND2001-8662.
3.
Horstemeyer
,
M. F.
, and
Wang
,
P.
, 2003, “
Cradle-to-Grave Simulation-Based Design Incorporating Multiscale Microstructure-Property Modeling: Reinvigorating Design With Science
,”
J. Comput. Aided Mater. Des.
,
10
, pp.
13
34
. 0928-1045
4.
Tadmor
,
E. B.
, 1996, “
The Quasicontinuum Method
,” Ph.D. thesis, Brown University, Providence, RI.
5.
Tadmor
,
E. B.
,
Ortiz
,
M.
, and
Phillips
,
R.
, 1996, “
Quasicontinuum Analysis of Defects in Solids
,”
Philos. Mag. A
0141-8610,
73
, pp.
1529
1563
.
6.
Shilkrot
,
L. E.
,
Curtin
,
W. A.
, and
Miller
,
R. E.
, 2002, “
A Coupled Atomistic/Continuum Model of Defects in Solids
,”
J. Mech. Phys. Solids
0022-5096,
50
, pp.
2085
2106
.
7.
Campbell
,
C. E.
, and
Olson
,
G. B.
, 2000, “
Systems Design of High Performance Stainless Steels I. Conceptual and Computational Design
,”
J. Comput. Aided Mater. Des.
,
7
, pp.
145
170
. 0928-1045
8.
Groh
,
S.
,
Marin
,
E.
,
Horstemeyer
,
M.
, and
Zbib
,
H. M.
, 2009, “
Multiscale Modeling of the Plasticity in an Aluminium Single Crystal
,”
Int. J. Plast.
0749-6419,
25
, pp.
1456
1473
.
9.
Flory
,
P. J.
, 1989,
Statistical Mechanics of Chain Molecules
,
Interscience
,
New York
.
10.
Binder
,
K.
, 1995,
Monte Carlo and Molecular Dynamics Simulations in Polymer Science
,
Oxford University Press
,
New York
.
11.
Christopher
,
J. C.
, 2002,
Essentials of Computational Chemistry, Theories and Model
,
Wiley
,
New York
.
12.
Levine
,
I. N.
, 1991,
Quantum Chemistry
,
Prentice-Hall
,
Englewood Cliffs, NJ
, pp.
455
544
.
13.
Szabo
,
A.
, and
Ostlund
,
N. S.
, 1996,
Modern Quantum Chemistry
,
Dover
,
Mineola, NY
.
14.
Leininger
,
M. L.
,
Allen
,
W. D.
,
Schaefer
,
H. F.
, and
Sherrill
,
C. D.
, 2000, “
Is Møller–Plesset Perturbation Theory a Convergent ab initio Method?
,”
J. Chem. Phys.
0021-9606,
112
(
21
), pp.
9213
9222
.
15.
Hurley
,
A. C.
, 1976,
Electronic Correlation in Small Molecules
,
Academic
,
New York
.
16.
Bartlett
,
R. J.
, 1981, “
Many Body Perturbation Theory and Coupled Cluster Theory for Electron Correlation in Molecules
,”
Annu. Rev. Phys. Chem.
0066-426X,
32
, pp.
359
401
.
17.
Knowles
,
P. J.
, and
Werner
,
H. J.
, 1985, “
An Efficient Second-Order MC SCF Method for Long Configuration Expansions
,”
Chem. Phys. Lett.
0009-2614,
115
, pp.
259
267
.
18.
Werner
,
H. J.
, and
Knowles
,
P. J.
, 1985, “
A Second Order Multiconfiguration SCF Procedure With Optimum Convergence
,”
J. Chem. Phys.
0021-9606,
82
, pp.
5053
5063
.
19.
Pople
,
J.
, and
Beveridge
,
D.
, 1970,
Approximate Molecular Orbital Theory
,
McGraw-Hill
,
New York
.
20.
Pople
,
J. A.
, and
Segal
,
G. A.
, 1965, “
Approximate Self-Consistent Molecular Orbital Theory. II. Calculations With Complete Neglect of Differential Overlap
,”
J. Chem. Phys.
0021-9606,
43
, pp.
S136
S151
.
21.
Pople
,
J. A.
,
Santry
,
D. P.
, and
Segal
,
G. A.
, 1965, “
Approximate Self-Consistent Molecular Orbital Theory. I. Invariant Procedures
,”
J. Chem. Phys.
0021-9606,
43
, pp.
129
135
.
22.
Pople
,
J. A.
, and
Segal
,
G. A.
, 1966, “
Approximate Self-Consistent Molecular Orbital Theory. III. CNDO Results for AB2 and AB3 Systems
,”
J. Chem. Phys.
0021-9606,
44
, pp.
3289
3296
.
23.
Gordon
,
M. S.
, and
Pople
,
J. A.
, 1968, “
Approximate Self-Consistent Molecular-Orbital Theory. VI. INDO Calculated Equilibrium Geometries
,”
J. Chem. Phys.
0021-9606,
49
, pp.
4643
4650
.
24.
Dewar
,
M. J. S.
, and
Thiel
,
W.
, 1977, “
Ground States of Molecules. 38. The MNDO Method. Approximations and Parameters
,”
J. Am. Chem. Soc.
0002-7863,
99
, pp.
4899
4907
.
25.
Bingham
,
R. C.
,
Dewar
,
M. J. S.
, and
Lo
,
D. H.
, 1975, “
Ground States of Molecules. XXV. MINDO/3. Improved Version of the MINDO Semiempirical SCF-MO Method
,”
J. Am. Chem. Soc.
0002-7863,
97
, pp.
1285
1293
.
26.
Dewar
,
M. J. S.
,
Zoebisch
,
E. G.
,
Healy
,
E. F.
, and
Stewart
,
J. J. P.
, 1985, “
Development and Use of Quantum Mechanical Molecular Models. 76. AM1: A New General Purpose Quantum Mechanical Molecular Model
,”
J. Am. Chem. Soc.
0002-7863,
107
, pp.
3902
3909
.
27.
Dreizler
,
R. M.
, and
Gross
,
E. K. U.
, 1990,
Density Functional Theory
,
Springer
,
Berlin
.
28.
Parr
,
R. G.
, and
Yang
,
W.
, 1989,
Density Functional Theory of Atoms and Molecules
,
Oxford University Press
,
New York
.
29.
Hohenberg
,
P.
, and
Kohn
,
W.
, 1964, “
In Homogeneous Electron Gas
,”
Phys. Rev.
0096-8250,
136
, pp.
B864
B871
.
30.
Kohn
,
W.
, and
Sham
,
L. J.
, 1965, “
Self-Consistent Equations Including Exchange and Correlation Effects
,”
Phys. Rev.
0096-8250,
140
, pp.
A1133
A1138
.
31.
Jones
,
R. O.
, and
Gunnarsson
,
O.
, 1989, “
The Density Functional Formalism, Its Applications and Prospects
,”
Rev. Mod. Phys.
0034-6861,
61
, pp.
689
746
.
32.
Perdew
,
J. P.
, 1991,
Electronic Structure of Solids
,
P.
Ziesche
and
H.
Eschrig
, eds.,
Akademic
,
Berlin
, p.
11
.
33.
Fulde
,
P.
, 1993,
Electron Correlations in Molecules and Solids
,
Springer
,
Berlin
.
34.
Perdew
,
J. P.
,
Burke
,
K.
, and
Wang
,
Y.
, 1996, “
Generalized Gradient Approximation for the Exchange-Correlation Hole of a Many-Electron System
,”
Phys. Rev. B
0163-1829,
54
, pp.
16533
16539
.
35.
Perdew
,
J. P.
, and
Zunger
,
A.
, 1981, “
Self-Interaction Correction to Density-Functional Approximations for Many Electron Systems
,”
Phys. Rev. B
0163-1829,
23
, pp.
5048
5079
.
36.
Tao
,
J.
,
Perdew
,
J. P.
,
Staroverov
,
V. N.
, and
Scuseria
,
G. E.
, 2003, “
Climbing the Density Functional Ladder: Nonempirical Meta-Generalized Gradient Approximation Designed for Molecules And Solids
,”
Phys. Rev. Lett.
0031-9007,
91
, p.
146401
.
37.
Mattsson
,
A. E.
,
Schultz
,
P. A.
,
Desjarlais
,
M. P.
,
Mattsson
,
T. R.
, and
Leung
,
K.
, 2005, “
Designing Meaningful Density Functional Theory Calculations in Materials Science—A Primer
,”
Modell. Simul. Mater. Sci. Eng.
0965-0393,
13
, pp.
R1
R31
.
38.
Adamo
,
C.
, and
Barone
,
V.
, 1998, “
Exchange Functional With Improved Long-Range Behavior and Adiabatic Connection Methods Without Adjustable Parameters: The mPW and mPW1PW Models
,”
J. Chem. Phys.
0021-9606,
108
, pp.
664
675
.
39.
Becke
,
A. D.
, 1993, “
Density-Functional Thermochemistry. III. The Role of Exact Exchange
,”
J. Chem. Phys.
0021-9606,
98
, pp.
5648
5652
.
40.
Filatov
,
M.
, and
Thiel
,
W.
, 1997, “
A New Gradient-Corrected Exchange-Correlation Density Functional
,”
Mol. Phys.
0026-8976,
91
, pp.
847
859
.
41.
Lee
,
C.
,
Yang
,
W.
, and
Parr
,
G. R.
, 1988, “
Development of the Colle-Salvetti Correlation-Energy Formula Into a Functional of the Electron Density
,”
Phys. Rev. B
0163-1829,
37
, pp.
785
789
.
42.
Perdew
,
J. P.
,
Burke
,
K.
, and
Ernzerhof
,
M.
, 1996, “
Generalized Gradient Approximation Made Simple
,”
Phys. Rev. Lett.
0031-9007,
77
, pp.
3865
3868
.
43.
Perdew
,
J. P.
,
Chevary
,
J. A.
,
Vosko
,
S. H.
,
Jackson
,
K. A.
,
Pederson
,
M. R.
,
Singh
,
D. J.
, and
Fiolhais
,
C.
, 1992, “
Atoms, Molecules, Solids, and Surfaces: Applications of the Generalized Gradient Approximation for Exchange and Correlation
,”
Phys. Rev. B
0163-1829,
46
, pp.
6671
6687
.
44.
Stephens
,
P. J.
,
Devlin
,
F. J.
,
Chabalowski
,
C. F.
, and
Frisch
,
M. J.
, 1994, “
Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields
,”
J. Phys. Chem.
0022-3654,
98
, pp.
11623
11627
.
45.
Turkowskiand
,
V. C.
, and
Ullrich
,
C. A.
, 2008, “
Time-Dependent Density-Functional Theory for Ultrafast Interband Excitations
,”
Phys. Rev. B
0163-1829,
77
, p.
075204
.
46.
Carter
,
E. A.
, 2008, “
Challenges in Modeling Materials Properties Without Experimental Input
,”
Science
0036-8075,
321
, pp.
800
803
.
47.
Perez
,
S.
, and
Scaringe
,
R. P.
, 1987, “
Crystalline Features of 4,4′-Isopropylidenediphenylbis(Phenyl Carbonate) and Conformational Analysis of the Polycarbonate of 2,2-Bis(4-Hydroxyphenyl)Propane
,”
Macromolecules
0024-9297,
20
, pp.
68
77
.
48.
Henrichs
,
P. M.
, and
Luss
,
H. R.
, 1988, “
Ring Dynamics in a Crystalline Analog of Bisphenol A Polycarbonate
,”
Macromolecules
0024-9297,
21
, pp.
860
862
.
49.
Williams
,
A. D.
, and
Flory
,
P. J.
, 1968, “
Analysis of the Random Configuration of the Polycarbonate of diphenylol-2,2′-propane
,”
J. Polym. Sci., Polym. Phys. Ed.
0098-1273,
6
, pp.
1945
1952
.
50.
Tonelli
,
A. E.
, 1972, “
Conformational Characteristics of Isotactic Polypropylene
,”
Macromolecules
0024-9297,
5
, pp.
563
566
.
51.
Bicerano
,
J.
,
Hayden
,
A.
, and
Clark
,
J. H.
, 1988, “
Intrachain Rotations in the Poly(Ester Carbonates) 1. Quantum Mechanical Calculations on the Model Molecules 2,2-Diphenylpropane, Diphenylcarbonate, and Phenyl Benzoate
,”
Macromolecules
0024-9297,
21
, pp.
585
597
.
52.
Bicerano
,
J.
,
Hayden
,
A.
, and
Clark
,
J. H.
, 1988, “
Intrachain Rotations in the Poly(Ester Carbonates). 2. Quantum-Mechanical Calculations on Large Model Molecules Fully Representing Each Type of Phenyl Ring Environment
,”
Macromolecules
0024-9297,
21
, pp.
597
603
.
53.
Bernard
,
C.
,
Laskowski
,
B. C.
,
Do
,
Y.
,
Yoon
,
D. Y.
,
McLean
,
D.
,
Richard
,
L.
, and
Jaffe
,
R. L.
, 1988, “
Chain Conformations of Polycarbonate From ab initio Calculations
,”
Macromolecules
0024-9297,
21
, pp.
1629
1633
.
54.
Labrenz
,
D.
, and
Schröer
,
W.
, 1991, “
Conformational Analysis of Symmetric Carbonic Acid Esters by Quantum Chemical Calculations and Dielectric Measurements
,”
J. Mol. Struct.
0022-2860,
249
, pp.
327
341
.
55.
Sun
,
H.
,
Mumby
,
S. J.
,
Maple
,
J. R.
, and
Hagler
,
A. T.
, 1995, “
Ab Initio Calculations on Small Molecule Analogs of Polycarbonates
,”
J. Phys. Chem.
0022-3654,
99
, pp.
5873
5882
.
56.
Whitney
,
D. R.
, and
Yaris
,
R.
, 1997, “
Local Mechanism of Phenyl Ring-Flips in Glassy Polycarbonate
,”
Macromolecules
0024-9297,
30
, pp.
1741
1751
.
57.
Montanari
,
B.
,
Ballone
,
P.
, and
Jones
,
R. O.
, 1998, “
Density Functional Study of Crystalline Analogs of Polycarbonates
,”
Macromolecules
0024-9297,
31
, pp.
7784
7790
.
58.
Montanari
,
B.
,
Ballone
,
P.
, and
Jones
,
R. O.
, 1998, “
Density Functional Study of Molecular Crystals: Polyethylene and a Crystalline Analogs of Bisphenol-A Polycarbonates
,”
J. Chem. Phys.
0021-9606,
108
, pp.
6947
6951
.
59.
Montanari
,
B.
,
Ballone
,
P.
, and
Jones
,
R. O.
, 1999, “
Density Functional Study of Polycarbonate. 2. Crystalline Analogs, Cyclic Oligomers, and Their Fragments
,”
Macromolecules
0024-9297,
32
, pp.
3396
3404
.
60.
Sun
,
H.
,
Mumby
,
S. J.
,
Maple
,
J. R.
, and
Hagler
,
A. T.
, 1994, “
An Ab Initio CFF93 All-Atom Force Field for Polycarbonates
,”
J. Am. Chem. Soc.
0002-7863,
116
, pp.
2978
2987
.
61.
Ballone
,
P.
,
Montanari
,
B.
, and
Jones
,
O. R.
, 1999, “
Polycarbonate Simulations With a Density Functional Based Force Field
,”
J. Phys. Chem.
0022-3654,
103
, pp.
5387
5398
.
62.
Karasawa
,
N.
,
Dasgupta
,
S.
, and
Goddard
,
W. A.
, III
, 1991, “
Mechanical Properties and Force Field Parameters for Polyethylene Crystal
,”
J. Phys. Chem.
0022-3654,
95
, pp.
2260
2272
.
63.
Sun
,
H.
, 1998, “
COMPASS: An Ab Initio Force-Field Optimized for Condensed-Phase Applications—Overview With Details on Alkane and Benzene Compounds
,”
J. Phys. Chem. B
1089-5647,
102
, pp.
7338
7364
.
64.
van Duin
,
A. C. T.
,
Dasgupta
,
S.
,
Lorant
,
F.
, and
Goddard
,
W. A.
, III
, 2001, “
ReaxFF: A Reactive Force Field for Hydrocarbons
,”
J. Phys. Chem. A
1089-5639,
105
, pp.
9396
9409
.
65.
Dasgupta
,
S.
,
Yamasaki
,
T.
, and
Goddard
,
W. A.
, III
, 1996, “
The Hessian Biased Singular Value Decomposition Method for Optimization and Analysis of Force Fields
,”
J. Chem. Phys.
0021-9606,
104
, pp.
2898
2920
.
66.
Verlet
,
L.
, 1967, “
Computer “Experiments” on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules
,”
Phys. Rev.
0031-899X,
159
, pp.
98
103
.
67.
Allen
,
M. P.
, and
Tildesley
,
D. J.
, 1987,
Computer Simulation of Liquids
,
Oxford University Press
,
New York
.
68.
Nosé
,
S.
, 1984, “
A Unified Formulation of the Constant Temperature Molecular Dynamics Methods
,”
J. Chem. Phys.
0021-9606,
81
, pp.
511
519
.
69.
Hoover
,
W. G.
, 1985, “
Canonical Dynamics: Equilibrium Phase-Space Distributions
,”
Phys. Rev. A
1050-2947,
31
, pp.
1695
1697
.
70.
Theodorou
,
D. N.
, and
Suter
,
U. W.
, 1986, “
Atomistic Modeling of Mechanical Properties of Polymeric Glasses
,”
Macromolecules
0024-9297,
19
, pp.
139
154
.
71.
Theodorou
,
D. N.
, and
Suter
,
U. W.
, 1986, “
Local Structure and the Mechanism of Response to Elastic Deformation in a Glassy Polymer
,”
Macromolecules
0024-9297,
19
, pp.
379
387
.
72.
Brown
,
D.
, and
Clark
,
J. H. R.
, 1991, “
Molecular Dynamics Simulation of an Amorphous Polymer Under Tension. 1. Phenomenology
,”
Macromolecules
0024-9297,
24
, pp.
2075
2082
.
73.
Duering
,
E. R.
,
Kremer
,
K.
, and
Grest
,
G. S.
, 1994, “
Structure and Relaxation of End-Linked Polymer Networks
,”
J. Chem. Phys.
0021-9606,
101
, pp.
8169
8192
.
74.
Lavine
,
M. S.
,
Waheed
,
N.
, and
Rutledge
,
G. C.
, 2003, “
Molecular Dynamics Simulation of Orientation and Crystallization of Polyethylene During Uniaxial Extension
,”
Polymer
0032-3861,
44
, pp.
1771
1779
.
75.
Capaldi
,
F. M.
,
Boyce
,
M. C.
, and
Rutledge
,
G. C.
, 2004, “
Molecular Response of a Glassy Polymer to Active Deformation
,”
Polymer
0032-3861,
45
, pp.
1391
1399
.
76.
Paul
,
W.
,
Binder
,
K.
,
Kremer
,
K.
, and
Heermann
,
D. W.
, 1991, “
Structure-Property Correlation of Polymers, a Monte Carlo Approach
,”
Macromolecules
0024-9297,
24
, pp.
6332
6334
.
77.
Tschöp
,
W.
,
Kremer
,
K.
,
Batoulis
,
J.
,
Bürger
,
T.
, and
Hahn
,
O.
, 1998, “
Simulation of Polymer Melts. I. Coarse-Graining Procedure for Polycarbonates
,”
Acta Polym.
0323-7648,
49
, pp.
61
74
.
78.
Tschöp
,
W.
,
Kremer
,
K.
,
Hahn
,
O.
,
Batoulis
,
J.
, and
Bürger
,
T.
, 1998, “
Simulation of Polymer Melts. II. From Coarse-Grained Models Back to Atomistic Description
,”
Acta Polym.
0323-7648,
49
, pp.
75
79
.
79.
Underhill
,
P. T.
, and
Doyle
,
P. S.
, 2004, “
On the Coarse-Graining of Polymers Into Bead-Spring Chains
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
122
, pp.
3
31
.
80.
León
,
S.
,
van der Vegt
,
N.
,
Delle Site
,
L.
, and
Kremer
,
K.
, 2005, “
Bisphenol A Polycarbonate: Entanglement Analysis From Coarse-Grained MD Simulations
,”
Macromolecules
0024-9297,
38
, pp.
8078
8092
.
81.
Plimpton
,
S.
, 1995, “
Fast Parallel Algorithms for Short-Range Molecular Dynamics
,”
J. Comput. Phys.
0021-9991,
117
, pp.
1
19
.
82.
Theodorou
,
D. N.
, and
Suter
,
U. W.
, 1985, “
Detailed Molecular Structure of a Vinyl Polymer Glass
,”
Macromolecules
0024-9297,
18
, pp.
1467
1478
.
83.
Shepherd
,
J. E.
,
McDowell
,
D. L.
, and
Jacob
,
K. I.
, 2006, “
Modeling Morphology Evolution and Mechanical Behavior During Thermo-Mechanical Processing of Semi-Crystalline Polymers
,”
J. Mech. Phys. Solids
0022-5096,
54
, pp.
467
489
.
84.
Shepherd
,
J. E.
, 2006, “
Multiscale Modeling of the Deformation of Semi-Crystalline Polymers
,” Ph.D. thesis, Georgia Institute of Technology, Atlanta, GA.
85.
Mayo
,
S. L.
,
Olafson
,
B. D.
, and
Goddard
,
W. A.
, III
, 1990, “
Dreiding: A Generic Force Field for Molecular Simulations
,”
J. Phys. Chem.
0022-3654,
94
, pp.
8897
8909
.
86.
Milchev
,
A.
,
Paul
,
W.
, and
Binder
,
K.
, 1993, “
Off-Lattice Monte Carlo Simulation of Dilute and Concentrated Polymer Solutions Under Theta Conditions
,”
J. Chem. Phys.
0021-9606,
99
, pp.
4786
4798
.
87.
Milchev
,
A.
,
Binder
,
K.
, and
Bhattacharya
,
A.
, 2004, “
Polymer Translocation Through a Nanopore Induced by Adsorption: Monte Carlo Simulation of a Coarse-Grained Model
,”
J. Chem. Phys.
0021-9606,
121
, pp.
6042
6051
.
88.
Gibbons
,
T. G.
, and
Klein
,
M. L.
, 1973, “
Thermodynamic Properties for a Simple Model of Solid Carbon Dioxide: Monte Carlo, Cell Model, and Quasiharmonic Calculations
,”
J. Chem. Phys.
0021-9606,
60
, pp.
112
126
.
89.
Brooks
,
B. R.
,
Bruccoleri
,
R. E.
,
Olafson
,
B. D.
,
States
,
D. J.
,
Swaminathan
,
S.
, and
Karplus
,
M. J.
, 1983, “
CHARMM: A Program for Macromolecular Energy, Minimization, and Dynamics Calculations
,”
J. Comput. Chem.
0192-8651,
4
, pp.
187
217
.
90.
Nillson
,
L.
, and
Karplus
,
M.
, 1986, “
Empirical Energy Functions for Energy Minimization and Dynamics of Nucleic Acids
,”
J. Comput. Chem.
0192-8651,
7
, pp.
591
616
.
91.
Cornell
,
W. D.
,
Cieplak
,
P.
,
Bayly
,
C. I.
,
Gould
,
I. K.
,
Merz
,
K. M.
, Jr.
,
Ferguson
,
D. M.
,
Spellmeyer
,
D. C.
,
Fox
,
T.
,
Caldwell
,
J. W.
, and
Kollman
,
P. A.
, 1995, “
A Second Generation Force Field for the Simulation of Proteins and Nucleic Acids
,”
J. Am. Chem. Soc.
0002-7863,
117
, pp.
5179
5197
.
92.
De Gennes
,
P. -G.
, 1979,
Scaling Concepts in Polymer Physics
,
Cornell University Press
,
London
.
93.
Theodorou
,
D. N.
, 2004, “
Understanding and Predicting Structure-Property Relations in Polymeric Materials Through Molecular Simulations
,”
Mol. Phys.
0026-8976,
102
, pp.
147
166
.
94.
Carmesin
,
I.
, and
Kremer
,
K.
, 1988, “
The Bond Fluctuation Method: A New Effective Algorithm for the Dynamics of Polymers in All Spatial Dimensions
,”
Macromolecules
0024-9297,
21
, pp.
2819
2823
.
95.
Hoogerbrugge
,
P. J.
, and
Koelman
,
J. M. V. A.
, 1992, “
Simulating Microscopic Hydrodynamic Phenomena With Dissipative Particle Dynamics
,”
Europhys. Lett.
0295-5075,
19
, pp.
155
160
.
96.
Baschnagel
,
J.
,
Binder
,
K.
,
Paul
,
W.
,
Laso
,
M.
,
Suter
,
U. W.
,
Batoulis
,
I.
,
Jilge
,
W.
, and
Bürger
,
T.
, 1991, “
On the Construction of Coarse-Grained Models for Linear Flexible Polymer Chains: Distribution Functions for Groups of Consecutive Monomers
,”
J. Chem. Phys.
0021-9606,
95
, pp.
6014
6025
.
97.
Meyer
,
H.
,
Biermann
,
O.
,
Faller
,
R.
,
Reith
,
D.
, and
Müller-Plathe
,
F.
, 2000, “
Coarse Graining of Nonbonded Inter-Particle Potentials Using Automatic Simplex Optimization to Fit Structural Properties
,”
J. Chem. Phys.
0021-9606,
113
, pp.
6264
6275
.
98.
Abrams
,
C. F.
, and
Kremer
,
K.
, 2003, “
Combined Coarse-Grained and Atomistic Simulation of Liquid Bisphenol A-Polycarbonate: Liquid Packing and Intramolecular Structure
,”
Macromolecules
0024-9297,
36
, pp.
260
267
.
99.
Abrams
,
C. F.
, and
Kremer
,
K.
, 2001, “
The Effect of Bond Length on the Structure of Dense Bead-Spring Polymer Melts
,”
J. Chem. Phys.
0021-9606,
115
, pp.
2776
2785
.
100.
Kremer
,
K.
, and
Müller-Plathe
,
F.
, 2001, “
Multiscale Problems in Polymer Science: Simulation Approaches
,”
MRS Bull.
0883-7694,
26
(
3
), pp.
205
210
.
101.
Fetsko
,
S. W.
, and
Cummings
,
P. T.
, 2007, “
Brownian Dynamics Simulation of Bead-Spring Chain Models for Dilute Polymer Solutions in Elongational Flow
,”
J. Rheol.
0148-6055,
32
, pp.
285
298
.
102.
Koelman
,
J. M. V. A.
, and
Hoogerbrugge
,
P. J.
, 1993, “
Dynamic Simulations of Hard-Sphere Suspensions Under Steady Shear
,”
Europhys. Lett.
0295-5075,
21
(
3
), pp.
363
368
.
103.
Groot
,
R. D.
, and
Warren
,
P. B.
, 1997, “
Dissipative Particle Dynamics: Bridging the Gap Between Atomistic and Mesoscopic Simulation
,”
J. Chem. Phys.
0021-9606,
107
(
11
), pp.
4423
4435
.
104.
Español
,
P.
, 1998, “
Fluid Particle Model
,”
Phys. Rev. E
1063-651X,
57
(
3
), pp.
2930
2948
.
105.
Altevogt
,
P.
,
Evers
,
O. A.
,
Fraainje
,
J. G. E. M.
,
Maurits
,
N. M.
, and
van Vlimmeren
,
B. A. C.
, 1999, “
The MesoDyn Project: Software for Mesoscale Chemical Engineering
,”
J. Mol. Struct.: THEOCHEM
0166-1280,
463
, pp.
139
143
.
106.
Hänngi
,
P.
,
Talkner
,
P.
, and
Borkovec
,
M.
, 1990, “
Reaction-Rate Theory: Fifty Years After Kramers
,”
Rev. Mod. Phys.
0034-6861,
62
(
2
), pp.
251
341
.
107.
Voter
,
A. F.
, 1997, “
A Method for Accelerating the Molecular Dynamics Simulation of Infrequent Events
,”
J. Chem. Phys.
0021-9606,
106
(
11
), pp.
4665
4677
.
108.
Voter
,
A. F.
, 1997, “
Hyperdynamics: Accelerated Molecular Dynamics of Infrequent Events
,”
Phys. Rev. Lett.
0031-9007,
78
(
20
), pp.
3908
3911
.
109.
Henkelman
,
G.
, and
Jónsson
,
H.
, 2001, “
Long Time Scale Kinetic Monte Carlo Simulations Without Lattice Approximation and Predefined Event Table
,”
J. Chem. Phys.
0021-9606,
115
(
21
), pp.
9657
9666
.
110.
Sørensen
,
M. R.
, and
Voter
,
A. F.
, 2000, “
Temperature-Accelerated Dynamics for Simulation of Infrequent Events
,”
J. Chem. Phys.
0021-9606,
112
(
21
), pp.
9599
9606
.
111.
Grimmelmann
,
E. K.
,
Tully
,
J. C.
, and
Helfand
,
E.
, 1981, “
Molecular Dynamics of Infrequent Events: Thermal Desorption of Xenon From a Platinum Surface
,”
J. Chem. Phys.
0021-9606,
74
(
9
), pp.
5300
5310
.
112.
Steiner
,
M. M.
,
Genilloud
,
P. -A.
, and
Wilkins
,
J. W.
, 1998, “
Simple Bias Potential for Boosting Molecular Dynamics With the Hyperdynamics Scheme
,”
Phys. Rev. B
0163-1829,
57
(
17
), pp.
10236
10239
.
113.
Gong
,
X. G.
, and
Wilkins
,
J. W.
, 1999, “
Hyper Molecular Dynamics With a Local Bias Potential
,”
Phys. Rev. B
0163-1829,
59
(
1
), pp.
54
57
.
114.
Duan
,
X. M.
, and
Gong
,
X. G.
, 2003, “
Local Bias Potential in Hyper Molecular Dynamics Method
,”
Comput. Mater. Sci.
0927-0256,
27
, pp.
375
380
.
115.
Hutnik
,
M.
,
Gentile
,
F. T.
,
Ludovice
,
P. J.
,
Suter
,
U. W.
, and
Argon
,
A. S.
, 1991, “
An Atomistic Model of the Amorphous Glassy Polycarbonate of 4,4-Isopropylidenediphenol
,”
Macromolecules
0024-9297,
24
, pp.
5962
5969
.
116.
Verdier
,
P. H.
, 1966, “
Monte Carlo Studies of Lattice-Model Polymer Chains. II. End-to-End Length
,”
J. Chem. Phys.
0021-9606,
45
, pp.
2122
2128
.
117.
Hilhorst
,
H. J.
, and
Deutch
,
J. M.
, 1975, “
Analysis of Monte Carlo Reults on the Kinetics of Lattice Polymer Chains With Excluded Volume
,”
J. Chem. Phys.
0021-9606,
63
, pp.
5153
5161
.
118.
Baschnagel
,
J.
,
Binder
,
K.
, and
Wittmann
,
H. -P.
, 1993, “
The Influence of the Cooling Rate on the Glass Transition and the Glassy State in Three-Dimensional Dense Polymer Melts: A Monte Carlo Study
,”
J. Phys.: Condens. Matter
0953-8984,
5
, pp.
1597
1618
.
119.
Tries
,
V.
,
Paul
,
W.
,
Baschnagel
,
J.
, and
Binder
,
K.
, 1996, “
Modeling Polyethylene With the Bond Fluctuation Model
,”
J. Chem. Phys.
0021-9606,
106
, pp.
738
748
.
120.
Kremer
,
K.
,
Grest
,
G. S.
, and
Carmesin
,
I.
, 1988, “
Crossover From Rouse to Reptation Dynamics: A Molecular-Dynamics Simulation
,”
Phys. Rev. Lett.
0031-9007,
61
, pp.
566
569
.
121.
Jäckle
,
J.
, 1986, “
Models of the Glass Transition
,”
Rep. Prog. Phys.
0034-4885,
49
, pp.
171
231
.
122.
Kremer
,
K.
, and
Greset
,
G. S.
, 1990, “
Dynamics of Entangled Linear Polymer Melts: A Molecular-Dynamics Simulation
,”
J. Chem. Phys.
0021-9606,
92
, pp.
5057
5086
.
123.
de Gennes
,
P. G.
, 1979,
Scaling Concepts in Polymer Physics
,
Cornell University Press
,
Ithaca, NY
.
124.
Doi
,
M.
, and
Edwards
,
S. F.
, 1986,
The Theory of Polymer Dynamic
,
Clarendon
,
Oxford
.
125.
Kavassalis
,
T. A.
, and
Sundararajan
,
P. R.
, 1993, “
A Molecular Dynamics Study of Polyethylene Crystallization
,”
Macromolecules
0024-9297,
26
, pp.
4144
4150
.
126.
Bergström
,
J. S.
, and
Boyce
,
M. C.
, 2001, “
Deformation of Elastomeric Networks: Relation Between Molecular Level Deformation and Classical Statistical Mechanics Models of Rubber Elasticity
,”
Macromolecules
0024-9297,
32
, pp.
3795
3808
.
127.
Capaldi
,
F. M.
,
Boyce
,
M. C.
, and
Rutledge
,
G. C.
, 2002, “
Enhanced Mobility Accompanies the Active Deformation of a Glassy Amorphous Polymer
,”
Phys. Rev. Lett.
0031-9007,
89
, p.
175505
.
128.
Yashiro
,
K.
,
Ito
,
T.
, and
Tomita
,
Y.
, 2003, “
Molecular Dynamics Simulation of Deformation Behavior in Amorphous Polymer: Nucleation of Chain Entanglements and Network Structure Under Uniaxial Tension
,”
Int. J. Mech. Sci.
0020-7403,
45
, pp.
1863
1876
.
129.
Valavala
,
P. K.
,
Clancy
,
T. C.
,
Odegard
,
G. M.
, and
Gates
,
T. S.
, 2007, “
Nonlinear Multiscale Modeling of Polymer Materials
,”
Int. J. Solids Struct.
0020-7683,
44
, pp.
1161
1179
.
130.
Valavala
,
P. K.
,
Clancy
,
T. C.
,
Odegard
,
G. M.
,
Gates
,
T. S.
, and
Aifantis
,
E. C.
, 2009, “
Multiscale Modeling of Polymer Materials Using a Statistics-Based Micromechanics Approach
,”
Acta Mater.
1359-6454,
57
, pp.
525
532
.
131.
Shenogin
,
S.
, and
Ozisik
,
R.
, 2005, “
Simulation of Plastic Deformation in Glassy Polymers: Atomistic and Mesoscale Approaches
,”
J. Polym. Sci., Part B: Polym. Phys.
0887-6266,
43
, pp.
994
1004
.
132.
Kroner
,
E.
, 1960, “
Allgemeine kontinuumstheorie der versetzungen und eigenspannungen
,”
Arch. Ration. Mech. Anal.
0003-9527,
4
, pp.
273
334
.
133.
Lee
,
E. H.
, 1969, “
Elastic Plastic Deformation at Finite Strain
,”
ASME J. Appl. Mech.
0021-8936,
36
, pp.
1
6
.
134.
Anand
,
L.
, and
Gurtin
,
M. E.
, 2003, “
A Theory of Amorphous Solids Undergoing Large Deformations, With Application to Polymeric Glasses
,”
Int. J. Solids Struct.
0020-7683,
40
, pp.
1465
1487
.
135.
Boyce
,
M. C.
,
Weber
,
G. G.
, and
Parks
,
D. M.
, 1989, “
On the Kinematics of Finite Strain Plasticity
,”
J. Mech. Phys. Solids
0022-5096,
37
(
5
), pp.
647
665
.
136.
Gurtin
,
M. E.
, and
Anand
,
L.
, 2005, “
The Decomposition F=FeFp, Material Symmetry, and Plastic Irrotationality for Solids that Are Isotropic-Viscoplastic or Amorphous
,”
Int. J. Plast.
0749-6419,
21
, pp.
1686
1719
.
137.
Holzapfel
,
G. A.
, 2000,
Nonlinear Solid Mechanics. A Continuum Approach for Engineering
,
Wiley
,
New York
.
138.
Callen
,
H. B.
, 1985,
Thermodynamics and an Introduction to Thermostatistics
,
2nd ed.
,
Wiley
,
New York
.
139.
Coleman
,
B.
, and
Gurtin
,
M.
, 1967, “
Thermodynamics With Internal State Variables
,”
J. Chem. Phys.
0021-9606,
47
, pp.
597
613
.
140.
Germain
,
P.
,
Nguyen
,
Q. S.
, and
Suquet
,
P.
, 1983, “
Continuum Thermodynamics
,”
Trans. ASME, J. Appl. Mech.
0021-8936,
50
, pp.
1010
1020
.
141.
Lemaitre
,
J.
, and
Chaboche
,
J. L.
, 1990,
Mechanics of Solid Materials
,
Cambridge University Press
,
England
.
142.
Lubliner
,
J.
, 1990,
Plasticity Theory
,
Macmillan
,
New York
.
143.
Maugin
,
G. A.
, 1992,
The Thermomechanics of Plasticity and Fracture
,
Cambridge University Press
,
Cambridge, England
.
144.
Bathe
,
K.
, 1982,
Finite Element Procedure in Engineering Analysis
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
145.
Zienkiewicz
,
O.
, 1977,
The Finite Element Method
,
McGraw-Hill
,
New York
.
146.
Belytschko
,
T.
,
Liu
,
W. K.
, and
Moran
,
B.
, 2000,
Nonlinear Finite Element for Continua and Structures
,
Wiley
,
New York
.
147.
Van der Sluis
,
O.
,
Schreurs
,
P. J. G.
, and
Meijer
,
H. E. H.
, 2001, “
Homogenisation of Structured Elastoviscoplastic Solids at Finite Strains
,”
Mech. Mater.
0167-6636,
33
, pp.
499
522
.
148.
Perzyna
,
P.
, 1966, “
Fundamental Problems in Viscoplasticity
,”
Adv. Appl. Mech.
0065-2156,
9
, pp.
243
377
.
149.
Krempl
,
E.
, 1995, “
The Overstress Dependence of the Inelastic Rate of Deformation Inferred From Transient Tests
,”
Mater. Sci. Res. Int.
1341-1683,
1
, pp.
3
10
.
150.
Krempl
,
E.
, 1996, “
A Small Strain Viscoplasticity Theory Based on Overstress
,”
Unified Constitutive Laws of Plastic Deformation
,
A.
Krausz
and
K.
Krausz
, eds.,
Academic Press
,
San Diego
, pp.
281
318
.
151.
Krempl
,
E.
, and
Ho
,
K.
, 2000, “
An Overstress Model for Solid Polymer Deformation Behavior Applied to Nylon 66
,”
Time Dependent and Nonlinear Effects in Polymers and Composites
,
ASTM STP
,
1357
, pp.
118
137
.
152.
Krempl
,
E.
, and
Khan
,
F.
, 2003, “
Rate (Time)-Dependent Deformation Behavior: An Overview of Some Properties of Metals and Solid Polymers
,”
Int. J. Plast.
0749-6419,
19
, pp.
1069
1095
.
153.
Colak
,
O. U.
, 2005, “
Modeling Deformation Behavior of Polymers With Viscoplasticity Theory Based on Overstress
,”
Int. J. Plast.
0749-6419,
21
, pp.
145
160
.
154.
Christensen
,
R. M.
, 1982,
Theory of Viscoelasticty: An Introduction
,
Academic
,
New York
.
155.
Lubarda
,
V. A.
,
Benson
,
D. J.
, and
Meyers
,
M. A.
, 2003, “
Strain-Rate Effects in Rheological Models of Inelastic Response
,”
Int. J. Plast.
0749-6419,
19
, pp.
1097
1118
.
156.
Bardenhagen
,
S. G.
,
Stout
,
M. G.
, and
Gray
,
G. T.
, 1997, “
Three-Dimensional Finite Deformation Viscoplastic Constitutive Models for Polymeric Materials
,”
Mech. Mater.
0167-6636,
25
, pp.
235
253
.
157.
Khan
,
A. S.
, and
Zhang
,
H.
, 2001, “
Finite Deformation of a Polymer and Constitutive Modeling
,”
Int. J. Plast.
0749-6419,
17
, pp.
1167
1188
.
158.
Khan
,
A. S.
,
Lopez-Pamies
,
O.
, and
Kazmi
,
R.
, 2006, “
Thermo-Mechanical Large Deformation Response and Constitutive Modeling of Viscoelastic Polymers Over a Wide Range of Strain Rates and Temperatures
,”
Int. J. Plast.
0749-6419,
22
, pp.
581
601
.
159.
Leonov
,
A. I.
, 1976, “
Nonequilibrium Thermodynamics and Rheology of Viscoelastic Polymer Media
,”
Rheol. Acta
0035-4511,
15
, pp.
85
98
.
160.
Tervoort
,
T. A.
,
Smit
,
R. J. M.
,
Brekelmans
,
W. A. M.
, and
Govaert
,
L. E.
, 1998, “
A Constitutive Equation for the Elasto-Viscoplastic Deformation of Glassy Polymers
,”
Mech. Time-Depend. Mater.
1385-2000,
1
, pp.
269
291
.
161.
Tervoort
,
T. A.
, and
Govaert
,
L. E.
, 2000, “
Strain-Hardening Behavior of Polycarbonate in the Glassy State
,”
J. Rheol.
0148-6055,
44
, pp.
1263
1277
.
162.
Govaert
,
L. E.
,
Timmermans
,
P. H. M.
, and
Brekelmans
,
W. A. M.
, 2000, “
The Influence of Intrinsic Strain Softening on Strain Localization in Polycarbonate: Modeling and Experimental Validation
,”
ASME J. Eng. Mater. Technol.
0094-4289,
122
, pp.
177
185
.
163.
Chaboche
,
J. L.
, 1997, “
Thermodynamic Formulation of Constitutive Equations and Application to the Viscoplasticity and Viscoelasticity of Metals and Previous Termpolymers
,”
Int. J. Solids Struct.
0020-7683,
34
, pp.
2239
2254
.
164.
Frank
,
G. J.
, and
Brockman
,
R. A.
, 2001, “
A Viscoelastic-Viscoplastic Constitutive Model For Glassy Polymers
,”
Int. J. Solids Struct.
0020-7683,
38
, pp.
5149
5164
.
165.
Zaïri
,
F.
,
Naït-Abdelaziz
,
M.
,
Woznica
,
K.
, and
Gloaguen
,
J. M.
, 2007, “
Elasto-Viscoplastic Constitutive Equations for the Description of Glassy Polymer Behavior at Constant Strain Rate
,”
ASME J. Eng. Mater. Technol.
0094-4289,
129
(
1
), pp.
29
35
.
166.
Anand
,
L.
, and
Ames
,
N. M.
, 2006, “
On Modeling the Micro-Indentation Response of an Amorphous Polymer
,”
Int. J. Plast.
0749-6419,
22
, pp.
1123
1170
.
167.
Haward
,
R. N.
, and
Thackray
,
G.
, 1968, “
The Use of a Mathematical Model to Describe Isothermal Stress-Strain Curves in Glassy Thermoplastics
,”
Proc. R. Soc. London, Ser. A
1364-5021,
302
, pp.
453
472
.
168.
Eyring
,
H.
, 1936, “
Viscosity, Plasticity, and Diffusion as Examples of Absolute Reaction Rates
,”
J. Chem. Phys.
0021-9606,
4
, pp.
283
291
.
169.
James
,
H. M.
, and
Guth
,
E.
, 1943, “
Theory of Elastic Properties of Rubber
,”
J. Chem. Phys.
0021-9606,
11
, pp.
455
481
.
170.
Boyce
,
M. C.
,
Parks
,
D. M.
, and
Argon
,
A. S.
, 1988, “
Large Inelastic Deformation of Glassy Deformation of Glassy Polymers Part I: Rate Dependent Constitutive Model
,”
Mech. Mater.
0167-6636,
7
, pp.
15
33
.
171.
Argon
,
A. S.
, 1973, “
A Theory for the Low Temperature Plastic Deformation of Glassy Polymers
,”
Philos. Mag.
0031-8086,
28
, pp.
839
865
.
172.
Robertson
,
R. E.
, 1966, “
Theory for the Plasticity of Glassy Polymers
,”
J. Chem. Phys.
0021-9606,
44
, pp.
3950
3956
.
173.
Ree
,
T.
, and
Eyring
,
H.
, 1955, “
Theory of Non-Newtonian Flow. I. Solid Plastic System
,”
J. Appl. Phys.
0021-8979,
26
, pp.
793
800
.
174.
Ree
,
T.
, and
Eyring
,
H.
, 1958,
Rheology
, Vol.
III
,
Academic
,
New York
.
175.
Fotheringham
,
D. G.
, and
Cherry
,
B. W.
, 1976, “
Comment on the Compression Yield Behaviour of Polymethyl Methacrylate Over a Wide Range of Temperatures and Strain-Rates
,”
J. Mater. Sci.
0022-2461,
11
, pp.
1368
1370
.
176.
Fotheringham
,
D. G.
, and
Cherry
,
B. W.
, 1978, “
The Role of Recovery Forces in the Deformation of Linear Polyethylene
,”
J. Mater. Sci.
0022-2461,
13
, pp.
951
964
.
177.
Ogden
,
R. W.
, 1972, “
Large Deformation Isotropic Elasticity—On the Correlation of Theory and Experiment for Incompressible Rubberlike Solids
,”
Proc. R. Soc. London, Ser. A
0950-1207,
326
, pp.
565
584
.
178.
Rivlin
,
R. S.
, and
Saunders
,
D. W.
, 1951, “
Large Elastic Deformations of Isotropic Materials VII. Experiments on the Deformation of Rubber
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
243
(
865
), pp.
251
2881
.
179.
Yeoh
,
O. H.
, 1990, “
Characterization of Elastic Propoerties of Carbon-Black-Filled Rubber Vulcanizates
,”
Rubber Chem. Technol.
0035-9475,
63
, pp.
792
805
.
180.
Gent
,
A. N.
, 1996, “
A New Constitutive Relation for Rubber
,”
Rubber Chem. Technol.
0035-9475,
69
, pp.
59
61
.
181.
Arruda
,
E. M.
, and
Boyce
,
M. C.
, 1993, “
A Three-Dimensional Constitutive Model for the Large Stretch Behavior of Rubber Elastic Materials
,”
J. Mech. Phys. Solids
0022-5096,
41
, pp.
389
412
.
182.
Wu
,
P. D.
, and
Van der Giessen
,
E.
, 1993, “
On Improved Network Models for Rubber Elasticity and Their Applications to Orientation Hardening in Glassy Polymers
,”
J. Mech. Phys. Solids
0022-5096,
41
, pp.
427
456
.
183.
Elias-Zuniga
,
A.
, and
Beatty
,
M. F.
, 2002, “
Constitutive Equations for Amended Non-Gaussian Network Models of Rubber Elasticity
,”
Int. J. Eng. Sci.
0020-7225,
40
, pp.
2265
2294
.
184.
Miehe
,
C.
,
Goktepe
,
S.
, and
Mendez Diez
,
J.
, 2008, “
Finite Viscoplasticity of Amorphous Glassy Polymers in the Logarithmic Strain Space
,”
Int. J. Solids Struct.
0020-7683,
46
, pp.
181
202
.
185.
Mulliken
,
A. D.
, and
Boyce
,
M. C.
, 2006, “
Mechanics of the Rate-Dependent Elastic–Plastic Deformation of Glassy Polymers From Low to High Strain Rates
,”
Int. J. Solids Struct.
0020-7683,
43
, pp.
1331
1356
.
186.
Richeton
,
J.
,
Ahzi
,
S.
,
Vecchio
,
K. S.
,
Jiang
,
F. C.
, and
Makradi
,
A.
, 2007, “
Modeling and Validation of the Large Deformation Inelastic Response of Amorphous Polymers Over a Wide Range of Temperatures and Strain Rates
,”
Int. J. Solids Struct.
0020-7683,
44
, pp.
7938
7954
.
187.
Hasan
,
O. A.
,
Boyce
,
M. C.
,
Li
,
X. S.
, and
Berko
,
S.
, 1993, “
An Investigation of the Yield and Postyield Behavior and Corresponding Structure of Poly(Methyl Methacrylate)
,”
J. Polym. Sci., Part B: Polym. Phys.
0887-6266,
31
, pp.
185
197
.
188.
Hasan
,
O. A.
, and
Boyce
,
M. C.
, 1995, “
A Constitutive Model for the Nonlinear Viscoelastic Viscoplastic Behavior of Glassy Polymers
,”
Polym. Eng. Sci.
0032-3888,
35
, pp.
331
344
.
189.
McDowell
,
D.
, 2005, “
Internal State Variable Theory
,”
Handbook of Materials Modeling, Part A: Methods
,
S.
Yip
and
M. F.
Horstemeyer
, eds.,
Springer
,
The Netherlands
, pp.
1151
1170
.
190.
Follansbee
,
P.
, and
Cocks
,
U.
, 1988, “
A Constitutive Description of the Deformation of Copper Based on the Use of the Mechanical Threshold Stress as an Internal State Variable
,”
Acta Metall.
0001-6160,
36
, pp.
81
93
.
191.
Horstemeyer
,
M.
, 1998, “
Damage Influence on Bauschinger Effect of a Cast A356 Aluminum Alloy
,”
Scr. Mater.
1359-6462,
39
, pp.
1491
1495
.
192.
Horstemeyer
,
M.
, 2001, “
From Atoms to Autos: Part 2: Monotonic Loads
,” Sandia National Laboratories, Report No. SAND2001-8662.
193.
McDowell
,
D.
, 1985, “
Two Surface Model for Transient Nonproportional Cyclic Plasticity: Part 1. Development of Appropriate Equations
,”
ASME J. Appl. Mech.
0021-8936,
52
, pp.
298
302
.
194.
Horstemeyer
,
M.
, 2002, “
High Cycle Fatigue Mechanisms in a Cast AM60B Magnesium Alloy
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
25
, pp.
1045
1056
.
195.
Gall
,
K.
, and
Horstemeyer
,
M.
, 2000, “
Integration of Basic Materials Research Into the Design of Cast Components by a Multiscale Methodology
,”
ASME J. Eng. Mater. Technol.
0094-4289,
122
, pp.
355
362
.
196.
Horstemeyer
,
M. F.
,
Lathrop
,
J.
,
Gokhale
,
A. M.
, and
Dighe
,
M.
, 2000, “
Modeling Stress State Dependent Damage Evolution in a Cast Al–Si–Mg Aluminum Alloy
,”
Theor. Appl. Fract. Mech.
0167-8442,
33
, pp.
31
47
.
197.
Horstemeyer
,
M.
,
Plimpton
,
S.
, and
Baskes
,
M.
, 2001, “
Length Scale and Time Scale Effects on the Plastic Flow of fcc Metals
,”
Acta Mater.
1359-6454,
49
, pp.
4363
4374
.
198.
Schapery
,
R. A.
, 1999, “
Nonlinear Viscoelastic and Viscoplastic Constitutive Equations With Growing Damage
,”
Int. J. Fract.
0376-9429,
97
, pp.
33
66
.
199.
Yoon
,
C.
, and
Allen
,
D. H.
, 1999, “
Damage Dependent Constitutive Behavior and Energy Release Rate for a Cohesive Zone in a Thermoviscoelastic Solid
,”
Int. J. Fract.
0376-9429,
96
, pp.
55
74
.
200.
Wei
,
P. J.
, and
Chen
,
J. K.
, 2003, “
A Viscoelastic Constitutive Model With Nonlinear Evolutionary Internal Variables
,”
Acta Mech.
0001-5970,
164
, pp.
217
225
.
201.
Ghorbel
,
E.
, 2008, “
A Viscoplastic Constitutive Model for Polymeric Materials
,”
Int. J. Plast.
0749-6419,
24
, pp.
2032
2058
.
202.
Anand
,
L.
,
Ames
,
N. M.
,
Srivastava
,
V.
, and
Chester
,
S. C.
, 2009, “
A Thermo-Mechanically Coupled Theory for Large Deformations of Amorphous Polymers. Part I: Formulation
,”
Int. J. Plast.
0749-6419,
25
, pp.
1474
1494
.
203.
Ames
,
N. M.
,
Srivastava
,
V.
,
Chester
,
S. C.
, and
Anand
,
L.
, 2009, “
A Thermo-Mechanically Coupled Theory for Large Deformations of Amorphous Polymers. Part II: Applications
,”
Int. J. Plast.
0749-6419,
25
, pp.
1495
1539
.
204.
Theodorou
,
D. N.
, 2004, “
Understanding and Predicting Structure-Property Relations in Polymeric Materials Through Molecular Simulations
,”
Molecular Physics Foundations of Molecular Modeling and Simulation FOMMS 2003
,
Taylor & Francis
, London, Vol.
102
(
2
, part 1), pp.
147
166
.
205.
Theodorou
,
D. N.
, 2007, “
Hierarchical Modelling of Polymeric Materials
,”
Chem. Eng. Sci.
0009-2509,
62
, pp.
5697
5714
.
You do not currently have access to this content.