Large deformation kinematics and internal forces arising from defects in crystalline solids are addressed by a nonlinear kinematic description and multiscale averaging concepts. An element of crystalline material with spatially uniform properties and containing defects such as dislocation lines and loops is considered. The average deformation gradient for this element is decomposed multiplicatively into terms accounting for effects of dislocation flux, recoverable elastic stretch and rotation, and residual elastic deformation associated with self-equilibrating internal forces induced by defects. Two methods are considered for quantifying average residual elastic deformation: continuum elasticity and discrete lattice statics. Average residual elastic strains and corresponding average residual elastic volume changes are negligible in the context of linear elasticity or harmonic force potentials but are not necessarily inconsequential in the more general case of nonlinear elasticity or anharmonic interactions.

1.
Orowan
,
E.
, 1940, “
Problems of Plastic Gliding
,”
Proc. Phys. Soc. London
0370-1328,
52
, pp.
8
22
.
2.
Mura
,
T.
, 1968, “
Continuum Theory of Dislocations and Plasticity
,”
Mechanics of Generalized Continua
,
E.
Kroner
, ed.,
Springer-Verlag
,
New York
, pp.
269
278
.
3.
Bilby
,
B. A.
,
Gardner
,
L. R. T.
, and
Stroh
,
A. N.
, 1957, “
Continuous Distributions of Dislocations and the Theory of Plasticity
,”
Proceedings of the Ninth International Congress of Applied Mechanics
, Bruxelles, Vol.
8
, pp.
35
44
.
4.
Teodosiu
,
C.
, 1970, “
A Dynamic Theory of Dislocations and Its Applications to the Theory of the Elastic-Plastic Continuum
,”
Fundamental Aspects of Dislocation Theory
,
J. A.
Simmons
,
R.
De Wit
, and
R.
Bullough
, eds., U.S. Natl. Bur. Stand. Spec. Publ. No. 317, Washington, DC, Vol.
II
, pp.
837
876
.
5.
Rice
,
J. R.
, 1971, “
Inelastic Constitutive Relations for Solids: An Internal Variable Theory and Its Application to Metal Plasticity
,”
J. Mech. Phys. Solids
0022-5096,
19
, pp.
433
455
.
6.
De Wit
,
R.
, 1973, “
Theory of Disclinations II, III, IV
,”
J. Res. Nat. Bureau Standards A Phys. Chem.
0160-1741,
77
, pp.
49
100
, 359–368, 607–658.
7.
Mura
,
T.
, 1982,
Micromechanics of Defects in Solids
,
Martinus Nijhoff
,
Dordrecht
.
8.
Zener
,
C.
, 1942, “
Theory of Lattice Expansion Introduced by Cold Work
,”
Trans. Am. Inst. Min. Metall. Engrs.
,
147
, pp.
361
368
.
9.
Schmid
,
E.
, and
Boas
,
I. W.
, 1950,
Plasticity of Crystals
,
Chapman and Hall
,
London
.
10.
Holder
,
J.
, and
Granato
,
A. V.
, 1969, “
Thermodynamic Properties of Solids Containing Defects
,”
Phys. Rev.
0031-899X,
182
, pp.
729
741
.
11.
Wright
,
T. W.
, 1982, “
Stored Energy and Plastic Volume Change
,”
Mech. Mater.
0167-6636,
1
, pp.
185
187
.
12.
Taheri
,
M.
,
Weiland
,
H.
, and
Rollett
,
A.
, 2006, “
A Method of Measuring Stored Energy Macroscopically Using Statistically Stored Dislocations in Commercial Purity Aluminum
,”
Metall. Mater. Trans. A
1073-5623,
37
, pp.
19
25
.
13.
Rosakis
,
P.
,
Rosakis
,
A. J.
,
Ravichandran
,
G.
, and
Hodowany
,
J.
, 2000, “
A Thermodynamic Internal Variable Model for the Partition of Plastic Work Into Heat and Stored Energy in Metals
,”
J. Mech. Phys. Solids
0022-5096,
48
, pp.
581
607
.
14.
Rohatgi
,
A.
, and
Vecchio
,
K. S.
, 2002, “
The Variation of Dislocation Density as a Function of the Stacking Fault Energy in Shock-Deformed FCC Materials
,”
Mater. Sci. Eng., A
0921-5093,
328
, pp.
256
266
.
15.
Clayton
,
J. D.
, 2009, “
A Continuum Description of Nonlinear Elasticity, Slip and Twinning, With Application to Sapphire
,”
Proc. R. Soc. London, Ser. A
0950-1207,
465
, pp.
307
334
.
16.
Clayton
,
J. D.
,
Bammann
,
D. J.
, and
McDowell
,
D. L.
, 2005, “
A Geometric Framework for the Kinematics of Crystals With Defects
,”
Philos. Mag.
1478-6435,
85
, pp.
3983
4010
.
17.
Clayton
,
J. D.
,
McDowell
,
D. L.
, and
Bammann
,
D. J.
, 2006, “
Modeling Dislocations and Disclinations With Finite Micropolar Elastoplasticity
,”
Int. J. Plast.
0749-6419,
22
, pp.
210
256
.
18.
Li
,
J. C. M.
, and
Gilman
,
J. T.
, 1970, “
Disclination Loops in Polymers
,”
J. Appl. Phys.
0021-8979,
41
, pp.
4248
4256
.
19.
Eshelby
,
J. D.
, 1954, “
Distortion of a Crystal Caused by Point Imperfections
,”
J. Appl. Phys.
0021-8979,
25
, pp.
255
261
.
20.
Eshelby
,
J. D.
, 1956, “
The Continuum Theory of Lattice Defects
,”
Solid State Physics 3
,
F.
Seitz
and
D.
Turnbull
, eds.,
Academic
,
New York
, pp.
79
144
.
21.
Hirth
,
J. P.
, and
Lothe
,
J.
, 1982,
Theory of Dislocations
,
Krieger
,
Malabar, FL
.
22.
Born
,
M.
, and
Huang
,
K.
, 1954,
Dynamical Theory of Crystal Lattices
,
Oxford University Press
,
Oxford
.
23.
Ericksen
,
J. L.
, 1984, “
The Cauchy and Born Hypothesis for Crystals
,”
Phase Transformations and Material Instabilities in Solids
,
M. E.
Gurtin
, ed.,
Academic
,
New York
, pp.
61
78
.
24.
Kroner
,
E.
, 1960, “
Allgemeine kontinuumsthoerie der versetzungen und eigenspannungen
,”
Arch. Ration. Mech. Anal.
0003-9527,
4
, pp.
273
334
.
25.
Lee
,
E. H.
, 1969, “
Elastic-Plastic Deformation at Finite Strains
,”
ASME J. Appl. Mech.
0021-8936,
36
, pp.
1
6
.
26.
Eckart
,
C.
, 1948, “
The Thermodynamics of Irreversible Processes IV. The Theory of Elasticity and Anelasticity
,”
Phys. Rev.
0031-899X,
73
, pp.
373
382
.
27.
Kroner
,
E.
, and
Seeger
,
A.
, 1959, “
Nicht-Lineare Elastizitatstheorie der Versetzungen und Eigenspannungen
,”
Arch. Ration. Mech. Anal.
0003-9527,
3
, pp.
97
119
.
28.
Willis
,
J. R.
, 1967, “
Second-Order Effects of Dislocations in Anisotropic Crystals
,”
Int. J. Eng. Sci.
0020-7225,
5
, pp.
171
190
.
29.
Teodosiu
,
C.
, 1982,
Elastic Models of Crystal Defects
,
Springer-Verlag
,
Berlin
.
30.
Nye
,
J. F.
, 1953, “
Some Geometrical Relations in Dislocated Crystals
,”
Acta Metall.
0001-6160,
1
, pp.
153
162
.
31.
Kondo
,
K.
, 1964, “
On the Analytical and Physical Foundations of the Theory of Dislocations and Yielding by the Differential Geometry of Continua
,”
Int. J. Eng. Sci.
0020-7225,
2
, pp.
219
251
.
32.
Steinmann
,
P.
, 1996, “
Views on Multiplicative Elastoplasticity and the Continuum Theory of Dislocations
,”
Int. J. Eng. Sci.
0020-7225,
34
, pp.
1717
1735
.
33.
Shizawa
,
K.
, and
Zbib
,
H.
, 1999, “
A Thermodynamical Theory of Plastic Spin and Internal Stress With Dislocation Density Tensor
,”
ASME J. Eng. Mater. Technol.
0094-4289,
121
, pp.
247
253
.
34.
Bammann
,
D. J.
, 2001, “
A Model of Crystal Plasticity Containing a Natural Length Scale
,”
Mater. Sci. Eng., A
0921-5093,
309–310
, pp.
406
410
.
35.
Regueiro
,
R. A.
,
Bammann
,
D. J.
,
Marin
,
E. B.
, and
Garikipati
,
K.
, 2002, “
A Nonlocal Phenomenological Anisotropic Finite Deformation Plasticity Model Accounting for Dislocation Defects
,”
ASME J. Eng. Mater. Technol.
0094-4289,
124
, pp.
380
387
.
36.
Clayton
,
J. D.
,
Bammann
,
D. J.
, and
McDowell
,
D. L.
, 2004, “
A Multiscale Gradient Theory for Elastoviscoplasticity of Single Crystals
,”
Int. J. Eng. Sci.
0020-7225,
42
, pp.
427
457
.
37.
Clayton
,
J. D.
,
Chung
,
P. W.
,
Grinfeld
,
M. A.
, and
Nothwang
,
W. D.
, 2008, “
Kinematics, Electromechanics, and Kinetics of Dielectric and Piezoelectric Crystals With Lattice Defects
,”
Int. J. Eng. Sci.
0020-7225,
46
, pp.
10
30
.
38.
Huang
,
K.
, 1950, “
On the Atomic Theory of Elasticity
,”
Proc. R. Soc. London, Ser. A
0950-1207,
203
, pp.
178
194
.
39.
Lardner
,
R. W.
, 1969, “
Dislocation Dynamics and the Theory of the Plasticity of Single Crystals
,”
Z. Angew. Math. Phys.
0044-2275,
20
, pp.
514
529
.
40.
Kratochvil
,
J.
, 1972, “
Finite Strain Theory of Inelastic Behavior of Crystalline Solids
,”
Foundations of Plasticity
,
A.
Sawczuk
, ed.,
Noordhoff
,
Leyden
, pp.
401
415
.
41.
Hartley
,
C. S.
, 2003, “
A Method for Linking Thermally Activated Dislocation Mechanisms of Yielding With Continuum Plasticity Theory
,”
Philos. Mag.
1478-6435,
83
, pp.
3783
3808
.
42.
Clayton
,
J. D.
, and
McDowell
,
D. L.
, 2003, “
A Multiscale Multiplicative Decomposition for Elastoplasticity of Polycrystals
,”
Int. J. Plast.
0749-6419,
19
, pp.
1401
1444
.
43.
Seeger
,
A.
, and
Haasen
,
P.
, 1958, “
Density Changes of Crystals Containing Dislocations
,”
Philos. Mag.
0031-8086,
3
, pp.
470
475
.
44.
Toupin
,
R. A.
, and
Rivlin
,
R. S.
, 1960, “
Dimensional Changes in Crystals Caused by Dislocations
,”
J. Math. Phys.
0022-2488,
1
, pp.
8
15
.
45.
Glarebrough
,
L. M.
,
Hargreaves
,
M. E.
, and
West
,
G. W.
, 1957, “
The Density of Dislocations in Compressed Copper
,”
Acta Metall.
0001-6160,
5
, pp.
738
740
.
46.
Zhou
,
M.
, 2003, “
A New Look at the Atomic Level Virial Stress: On Continuum-Molecular System Equivalence
,”
Proc. R. Soc. London, Ser. A
0950-1207,
459
, pp.
2347
2392
.
47.
Gallego
,
R.
, and
Ortiz
,
M.
, 1993, “
A Harmonic/Anharmonic Energy Partition Method for Lattice Statics Computations
,”
Modell. Simul. Mater. Sci. Eng.
0965-0393,
1
, pp.
417
436
.
48.
Maugin
,
G. A.
, 1999,
Nonlinear Waves in Elastic Crystals
,
Oxford University Press
,
New York
.
49.
Yavari
,
A.
,
Ortiz
,
M.
, and
Bhattacharya
,
K.
, 2007, “
A Theory of Anharmonic Lattice Statics for Analysis of Defective Crystals
,”
J. Elast.
0374-3535,
86
, pp.
41
83
.
50.
Horstemeyer
,
M. F.
, and
Baskes
,
M. I.
, 1999, “
Atomic Finite Deformation Simulations: A Discussion on Length Scale Effects in Relation to Mechanical Stress
,”
ASME J. Eng. Mater. Technol.
0094-4289,
121
, pp.
114
119
.
51.
Clayton
,
J. D.
, and
Chung
,
P. W.
, 2006, “
An Atomistic-to-Continuum Framework for Nonlinear Crystal Mechanics Based on Asymptotic Homogenization
,”
J. Mech. Phys. Solids
0022-5096,
54
, pp.
1604
1639
.
52.
Zbib
,
H. M.
,
Rubia
,
T. D. L.
, and
Bulatov
,
V.
, 2002, “
A Multiscale Model of Plasticity Based on Discrete Dislocation Dynamics
,”
ASME J. Eng. Mater. Technol.
0094-4289,
124
, pp.
78
87
.
53.
Asaro
,
R. J.
, 1983, “
Crystal Plasticity
,”
ASME J. Appl. Mech.
0021-8936,
50
, pp.
921
934
.
54.
Tadmor
,
E. B.
,
Smith
,
G. S.
,
Bernstein
,
N.
, and
Kaxiras
,
E.
, 1999, “
Mixed Finite Element and Atomistic Formulation for Complex Crystals
,”
Phys. Rev. B
0163-1829,
59
, pp.
235
245
.
55.
Hill
,
R.
, 1972, “
On Constitutive Macro-Variables for Heterogeneous Solids at Finite Strain
,”
Proc. R. Soc. London, Ser. A
0950-1207,
326
, pp.
131
147
.
56.
Clayton
,
J. D.
, and
McDowell
,
D. L.
, 2004, “
Homogenized Finite Elastoplasticity and Damage: Theory and Computations
,”
Mech. Mater.
0167-6636,
36
, pp.
799
824
.
57.
Hull
,
D.
, and
Bacon
,
D. J.
, 1984,
Introduction to Dislocations
,
3rd ed.
,
Butterworth-Heinemann
,
Oxford
.
58.
Thurston
,
R. N.
, 1974, “
Waves in Solids
,”
Handbuch der Physik
, Vol. VIa/
4
,
C.
Truesdell
, ed.,
Springer-Verlag
,
Berlin
, pp.
109
308
.
59.
Owen
,
D. J. R.
, and
Mura
,
T.
, 1967, “
Dislocation Configurations in Cylindrical Coordinates
,”
J. Appl. Phys.
0021-8979,
38
, pp.
2818
2825
.
60.
Huang
,
W.
, and
Mura
,
T.
, 1970, “
Elastic Fields and Energies of a Circular Edge Disclination and a Straight Screw Disclination
,”
J. Appl. Phys.
0021-8979,
41
, pp.
5175
5179
.
61.
Liu
,
G. C. T.
, and
Li
,
J. C. M.
, 1971, “
Strain Energies of Disclination Loops
,”
J. Appl. Phys.
0021-8979,
42
, pp.
3313
3315
.
62.
Kuo
,
H. H.
, and
Mura
,
T.
, 1972, “
Elastic Field and Strain Energy of a Circular Wedge Disclination
,”
J. Appl. Phys.
0021-8979,
43
, pp.
1454
1457
.
63.
Hughes
,
D. A.
,
Hansen
,
N.
, and
Bammann
,
D. J.
, 2003, “
Geometrically Necessary Boundaries, Incidental Dislocation Boundaries, and Geometrically Necessary Dislocations
,”
Scr. Mater.
1359-6462,
48
, pp.
147
153
.
64.
Zimmerman
,
J. A.
,
Webb
,
E. B.
, III
,
Hoyt
,
J. J.
,
Jones
,
R. E.
,
Klein
,
P. A.
, and
Bammann
,
D. J.
, 2004, “
Calculation of Stress in Atomistic Simulation
,”
Modell. Simul. Mater. Sci. Eng.
0965-0393,
12
, pp.
S319
S332
.
65.
Mindlin
,
R. D.
, 1972, “
Elasticity, Piezoelectricity, and Crystal Lattice Dynamics
,”
J. Elast.
0374-3535,
2
, pp.
217
282
.
66.
Thurston
,
R. N.
, and
Brugger
,
K.
, 1964, “
Third-Order Elastic Constants and the Velocity of Small Amplitude Elastic Waves in Homogeneously Stressed Media
,”
Phys. Rev.
0096-8250,
133
, pp.
A1604
A1610
.
67.
Zimmerman
,
J. A.
,
Bammann
,
D. J.
, and
Gao
,
H.
, 2009, “
Deformation Gradients for Continuum Mechanical Analysis of Atomistic Simulations
,”
Int. J. Solids Struct.
0020-7683,
46
, pp.
238
253
.
68.
Chantasiriwan
,
S.
, and
Milstein
,
F.
, 1996, “
Higher-Order Elasticity of Cubic Metals in the Embedded-Atom Method
,”
Phys. Rev. B
0163-1829,
53
, pp.
14080
14088
.
69.
Chung
,
P. W.
, and
Clayton
,
J. D.
, 2007, “
Multiscale Modeling of Point and Line Defects in Cubic Lattices
,”
Int. J. Multiscale Comp. Eng.
1543-1649,
5
, pp.
203
226
.
You do not currently have access to this content.