The present work extends the multicoated micromechanical model of Lipinski et al. (2006, “Micromechanical Modeling of an Arbitrary Ellipsoidal Multi-Coated Inclusion,” Philos. Mag., 86(10), pp. 1305–1326) in the quasistatic domain to compute the effective material moduli of a viscoelastic material containing multicoated spherical inclusions displaying elastic or viscoelastic behavior. Losses are taken into account by introducing the frequency-dependent complex stiffness tensors of the viscoelastic matrix and the multicoated inclusions. The advantage of the micromechanical model is that it is applicable to the case of nonspherical multicoated inclusions embedded in anisotropic materials. The numerical simulations indicate that with proper choice of material properties, it is possible to engineer multiphase polymer system to have a high-loss modulus (good energy dissipation characteristics) for a wide range of frequencies without substantially degrading the stiffness of the composite (storage modulus). The numerical analyses show also that with respect to the relative magnitudes of the loss factors and the storage moduli of the matrix, inclusion and coating, the overall properties of the viscoelastic particulate composite are dominated by the properties of the matrices in some frequency ranges. The model can thus be a suitable tool to explore a wide range of microstructures for the design of materials with high capacity to absorb acoustic and vibrational energies.

1.
Lakes
,
R. S.
, 1998,
Viscoelastic Solids
(
Mechanical Engineering Series
), Vol.
9
,
CRC
,
Boca Raton, FL
.
2.
Brinson
,
L. C.
, and
Lin
,
W. S.
, 1998, “
Comparison of Micromechanics Methods for Effective Properties Of Multiphase Viscoelastic Composites
,”
Compos. Struct.
,
41
, pp.
353
367
. 0263-8223
3.
Lee
,
J. H.
, and
Kim
,
K. J.
, 2001, “
Characterization of Complex Modulus of Viscoelastic Materials Subject to Static Compression
,”
Mech. Time-Depend. Mater.
,
5
(
3
), pp.
255
271
. 1385-2000
4.
Barhdadi
,
E. H.
,
Lipinski
,
P.
, and
Cherkaoui
,
M.
, 2007, “
Four Phase Model: A New Formulation to Predict the Effective Elastic Moduli of Composites
,”
ASME J. Eng. Mater. Technol.
0094-4289,
129
, pp.
313
320
.
5.
Lipinski
,
P.
,
Barhdadi
,
E. H.
, and
Cherkaoui
,
M.
, 2006, “
Micromechanical Modeling of an Arbitrary Ellipsoidal Multi-Coated Inclusion
,”
Philos. Mag.
,
86
(
10
), pp.
1305
1326
. 1478-6435
6.
Cherkaoui
,
M.
,
Sabar
,
H.
, and
Berveiller
,
M.
, 1995, “
Elastic Composites With Coated Reinforcements: A Micromechanical Approach for Nonhomothetic Topology
,”
Int. J. Eng. Sci.
0020-7225,
33
(
6
), pp.
829
843
.
7.
Cherkaoui
,
M.
,
Sabar
,
H.
, and
Berveiller
,
M.
, 1994, “
Micromechanical Approach of the Coated Inclusion Problem and Applications to Composite Materials
,”
ASME J. Eng. Mater. Technol.
0094-4289,
116
, pp.
274
278
.
8.
Hervé
,
E.
, and
Zaoui
,
A.
, 1993, “
N-Layered Inclusion-Based Micromechanical Modeling
,”
Int. J. Eng. Sci.
0020-7225,
31
, pp.
1
10
.
9.
Hashin
,
Z.
, 1991, “
Thermoelastic Properties of Particulate Composites With Imperfect Interface
,”
J. Mech. Phys. Solids
0022-5096,
39
, pp.
745
762
.
10.
Christensen
,
R. M.
, and
Lo
,
K. H.
, 1979, “
Solutions for Effective Shear Properties in Three Phase Sphere and Cylinder Models
,”
J. Mech. Phys. Solids
0022-5096,
27
, pp.
315
330
.
11.
Mori
,
T.
, and
Tanaka
,
K.
, 1973, “
Average Stress in Matrix and Average Elastic Energy of Materials With Misfitting Inclusions
,”
Acta Metall.
0001-6160,
21
, pp.
571
574
.
12.
Hashin
,
Z.
, 1962, “
The Elastic Moduli of Heterogeneous Materials
,”
ASME J. Appl. Mech.
,
29
, pp.
143
150
. 0021-8936
13.
Eshelby
,
J. D.
, 1957, “
The Determination of the Elastic Field of an Ellipsoidal Inclusion and Related Problems
,”
Proc. R. Soc. London, Ser. A
0950-1207,
241
, pp.
376
396
.
14.
Jarzynski
,
J.
, 1990, “
A Review of the Mechanisms of Sound Attenuation in Materials
,”
Sound and Vibration Damping With Polymers
, Vol.
424
,
R. D.
Corsaro
and
L. H.
Sperling
, eds.,
American Chemical Society
,
Washington, DC
, pp.
116
207
.
15.
Hashin
,
Z.
, 1965, “
Viscoelastic Behavior of Heterogeneous Media
,”
ASME J. Appl. Mech.
,
32
, pp.
630
636
. 0021-8936
16.
Hashin
,
Z.
, 1970, “
Complex Moduli of Viscoelastic Composites—I. General Theory and Application to Particulate Composites
,”
Int. J. Solids Struct.
0020-7683,
6
, pp.
539
552
.
17.
Christensen
,
R. M.
, 1969, “
Viscoelastic Properties of Heterogeneous Media
,”
J. Mech. Phys. Solids
0022-5096,
17
, pp.
23
41
.
18.
Haberman
,
M. R.
,
Berthelot
,
Y.
,
Jarzynski
,
J.
, and
Cherkaoui
,
M.
, 2002, “
Micromechanical Modeling of Viscoelastic Composites in the Low Frequency Approximation
,”
J. Acoust. Soc. Am.
0001-4966,
112
(
5
), pp.
1937
1943
.
19.
Haberman
,
M. R.
,
Berthelot
,
Y.
, and
Cherkaoui
,
M.
, 2005, “
Transmission Loss of Viscoelastic Materials Containing Oriented, Ellipsoidal, Coated Microinclusions
,”
J. Acoust. Soc. Am.
0001-4966,
118
(
5
), pp.
2984
2992
.
20.
Haberman
,
M. R.
,
Berthelot
,
Y.
, and
Cherkaoui
,
M.
, 2006, “
Micromechanical Modeling of Particulate Composites for Damping of Acoustic Waves
,”
ASME J. Eng. Mater. Technol.
0094-4289,
128
, pp.
320
329
.
21.
Baird
,
A. M.
,
Kerr
,
F. H.
, and
Townend
,
D. J.
, 1999, “
Wave Propagation in a Viscoelastic Medium Having Fluid-Filled Microspheres
,”
J. Acoust. Soc. Am.
0001-4966,
105
, pp.
1527
1538
.
22.
Friebel
,
C.
,
Doghri
,
I.
, and
Legat
,
V.
, 2006, “
General Mean-Field Homogenization Schemes for Viscoelastic Composites Containing Multiple Phases of Coated Inclusions
,”
Int. J. Solids Struct.
,
43
, pp.
2513
2541
. 0020-7683
23.
Zeller
,
R.
, and
Dederichs
,
P. H.
, 1973, “
Elastic Constants of Polycrystals
,”
Phys. Status Solidi B
0370-1972,
55
, pp.
831
842
.
24.
Blackstock
,
D. T.
, 2000,
Fundamentals of Physical Acoustics
,
Wiley-Interscience
,
New York
.
25.
Haberman
,
M. R.
, 2007, “
Design of High Loss Viscoelastic Composites Through Micromechanical Modeling and Decision Based Material by Design
,” Ph.D.thesis, George W. Woodruff School of Mechanical Engineering, Atlanta, GA.
26.
LeGonidec
,
Y.
,
Gibert
,
D.
, and
Proust
,
J. N.
, 2002, “
Multiscale Analysis of Waves Reflected by Complex Interfaces: Basic Principles and Experiments
,”
J. Geophys. Res., [Solid Earth]
,
107
(
B9
), p.
2184
. 1934-8843
27.
Eshelby
,
J. D.
, 1961,
Elastic Inclusions and Inhomogeneities
(
Progress in Solid Mechanics
), Vol.
2
,
North-Holland
,
Amsterdam
.
28.
Walpole
,
L. J.
, 1981, “
Elastic Behavior of Composite Materials: Theoretical Foundations
,”
Adv. Appl. Mech.
,
21
, pp.
169
242
. 0065-2156
29.
Lakes
,
R. S.
, and
Drugan
,
W. J.
, 2002, “
Dramatically Stiffer Elastic Composite Materials due to a Negative Stiffness Phase?
J. Mech. Phys. Solids
0022-5096,
50
, pp.
979
1009
.
30.
Lakes
,
R. S.
,
Lee
,
T.
,
Bersie
,
A.
, and
Wang
,
Y. C.
, 2001, “
Extreme Damping in Composite Materials With Negative Stiffness Inclusions
,”
Nature (London)
0028-0836,
410
, pp.
565
567
.
31.
Lakes
,
R. S.
, 2001, “
Extreme Damping in Composite Materials With a Negative Stiffness Phase
,”
Phys. Rev. Lett.
0031-9007,
86
, pp.
2897
2900
.
32.
Lakes
,
R. S.
, 2001, “
Extreme Damping in Compliant Composites With a Negative Stiffness Phase
,”
Philos. Mag. Lett.
0950-0839,
81
, pp.
95
100
.
33.
Falk
,
F.
, 1983, “
Ginzburg-Landau Theory of Static Domain Walls in Shape Memory Alloys
,”
Z. Phys.
,
51
(
2
), pp.
177
185
. 0950-0839
34.
Yoshimoto
,
K.
,
Jain
,
T. S.
,
Van Workum
,
K.
,
Nealey
,
P. F.
, and
de Pablo
,
J. J.
, 2004, “
Mechanical Heterogeneities in Model Polymer Glasses at Small Length Scales
,”
Phys. Rev. Lett.
0031-9007,
93
(
17
), p.
175501
.
35.
Papakonstantopoulos
,
G. J.
,
Yoshimoto
,
K.
,
Doxastakis
,
M.
,
Nealey
,
P. F.
, and
de Pablo
,
J. J.
, 2005, “
Local Mechanical Properties of Polymeric Nanocomposites
,”
Phys. Rev. E
1063-651X,
72
, pp.
031801
.
You do not currently have access to this content.