The effect of nanoclay on the high strain rate mechanical properties of syntactic foams is studied. Two types of microballoons with different wall thicknesses are used in fabrication of plain and nanoclay syntactic foams. Plain syntactic foams are fabricated with 60% volume fraction of glass microballoons. 1%, 2%, and 5% volume fractions of Nanomer I.30E nanoclay are incorporated to produce nanoclay syntactic foams. High strain rate test using split Hopkinson pressure bar (SHPB) apparatus is performed on all types of plain and nanoclay syntactic foams. Dynamic modulus, strength, and corresponding strain are calculated using the SHPB data. Quasistatic test is also performed and results are compared with the dynamic SHPB results. The results demonstrate the importance of nanoclay and microballoon wall thickness in determination of syntactic foam dynamic properties. It is found that at a high strain rate, the strength and modulus of composite foams having K46 microballoons increase due to addition of 1% volume fraction of nanoclay. However, in composite foams having S22 microballoons, the increase in strength is not significant at a high strain rate. Further increase in nanoclay volume fraction to 2% and 5% reduces the strength and modulus of composite foams having S22 microballoons. Difference in wall thickness of microballoons is found to affect the strength, modulus, strain energy, and deformation of composite foams. Composite foams fabricated with thicker walled microballoons (K46) show comparatively higher values of strength, modulus, and strain energy compared with thin walled (S22) microballoons. Scanning electron microscopy shows that crack propagation behavior is distinct at different strain rates.

1.
Ashida
,
K.
, and
Landrock
,
A. H.
, 1995,
Handbook of Plastic Foams: Types, Properties, Manufacture and Applications
,
Noyes
,
Park Ridge, NJ
, pp.
147
163
.
2.
Gupta
,
N.
,
Brar
,
B. S.
, and
Woldesenbet
,
E.
, 2001, “
Effect of Filler Addition on the Compressive and Impact Properties of Glass Fibre Reinforced Epoxy
,”
Bull. Mater. Sci.
,
24
(
2
), pp.
219
223
. 0250-4707
3.
d’Almeida
,
J. R. M.
, 1999, “
An Analysis of the Effect of the Diameters of Glass Microspheres on the Mechanical Behavior of Glass-Microsphere/Epoxy-Matrix Composites
,”
Compos. Sci. Technol.
,
59
, pp.
2087
2091
. 0266-3538
4.
Woldesenbet
,
E.
,
Gupta
,
N.
, and
Jerro
,
H. D.
, 2005, “
Effect of Microballoon Radius Ratio on Syntactic Foam Core Sandwich Composites
,”
Journal of Sandwich Structures and Materials
,
7
, pp.
95
111
. 0266-3538
5.
Gupta
,
N.
,
Woldesenbet
,
E.
,
Kishore
, and
Sankaran
,
S.
, 2002, “
Response of Syntactic Foam Core Sandwich Structured Composites to Three-Point Bending
,”
Journal of Sandwich Structures and Materials
,
4
, pp.
249
272
. 0266-3538
6.
Vinson
,
J. R.
, 1999,
The Behavior of Sandwich Structures of Isotropic and Composite Materials
,
Technomic Publishing Company
,
Lancaster, PA
.
7.
Bardella
,
L.
, and
Genna
,
F.
, 2001, “
On the Elastic Behavior of Syntactic Foams
,”
Int. J. Solids Struct.
0020-7683,
38
, pp.
7235
7260
.
8.
Gupta
,
N.
, and
Ricci
,
W.
, 2006, “
Comparison of Compressive Properties of Layered Syntactic Foams Having Gradient in Microballoon Volume Fraction and Wall Thickness
,”
Mater. Sci. Eng., A
,
427
, pp.
331
342
. 0921-5093
9.
Song
,
B.
,
Chen
,
W.
,
Yanagita
,
T.
, and
Frew
,
D. J.
, 2005, “
Confinement Effects on the Dynamic Compressive Properties of an Epoxy Syntactic Foam
,”
Compos. Struct.
,
67
, pp.
279
287
. 0263-8223
10.
Gorga
,
R. E.
, and
Cohen
,
R. E.
, 2004, “
Toughness Enhancements in Poly (Methyl-Methacrylate) by Addition of Oriented Multiwall Carbon Nanotubes
,”
J. Polym. Sci., Part B: Polym. Phys.
0887-6266,
42
, pp.
2690
2702
.
11.
Peter
,
S.
, and
Woldesenbet
,
E.
, 2008, “
Nanoclay Syntactic Foams Composites-High Strain Rate Properties
,”
Mater. Sci. Eng., A
0921-5093
494
, pp.
179
187
.
12.
Gupta
,
N.
,
Woldesenbet
,
E.
, and
Mensah
,
P.
, 2004, “
Compression Properties of Syntactic Foams: Effect of Cenosphere Radius Ratio and Specimen Aspect Ratio
,”
Composites, Part A
1359-835X,
35
, pp.
103
111
.
13.
Zhai
,
L.
,
Ling
,
G.
,
Li
,
J.
, and
Wang
,
Y.
, 2006, “
The Effect of Nanoparticles on the Adhesion of Epoxy Adhesive
,”
Mater. Lett.
0167-577X,
60
, pp.
3031
3033
.
14.
Huang
,
J. C.
,
Qian
,
X. F.
,
Yin
,
J.
,
Zhu
,
Z. K.
, and
Xu
,
H. J.
, 2001, “
Preparation of Soluble Polyimide–Silver Nanocomposites by a Convenient Ultraviolet Irradiation Technique
,”
Mater. Chem. Phys.
,
69
, pp.
172
175
. 0254-0584
15.
Yu
,
L.
,
Yang
,
S.
,
Wang
,
H.
, and
Xue
,
Q.
, 2000, “
An Investigation of the Friction and Wear Behaviors of Micrometer Copper Particle- and Nanometer Copper Particle-Filled Polyoxymethylene Composites
,”
J. Appl. Polym. Sci.
,
77
, pp.
2404
2410
. 0021-8995
16.
Lau
,
K. T.
, and
Hui
,
D.
, 2002, “
Effectiveness of Using Carbon Nanotubes as Nano-Reinforcements for Advanced Composite Structures
,”
Carbon
0008-6223,
40
(
9
), pp.
1605
1606
.
17.
Morlat
,
S.
,
Mailhot
,
B.
,
Gonzalez
,
D.
, and
Gardett
,
J. L.
, 2004, “
Photo-Oxidation of Polypropylene/Montmorillonite Nanocomposites. 1. Influence of Nanoclay and Compatibilizing Agent
,”
Chem. Mater.
0897-4756,
16
, pp.
377
383
.
18.
Timmerman
,
J. F.
,
Hayes
,
B. S.
, and
Seferis
,
J. C.
, 2002, “
Nanoclay Reinforcement Effects on the Cryogenic Microcracking of Carbon Fiber/Epoxy Composites
,”
Compos. Sci. Technol.
0266-3538,
62
, pp.
1249
1258
.
19.
Lin
,
J. C.
,
Chang
,
L. C.
,
Nien
,
M. H.
, and
Ho
,
H. L.
, 2006, “
Mechanical Behavior of Various Nanoparticle Filled Composites at Low-Velocity Impact
,”
Compos. Struct.
,
74
, pp.
30
36
. 0263-8223
20.
Zheng
,
Y.
,
Zheng
,
Y.
, and
Ning
,
R.
, 2003, “
Effects of Nanoparticles SiO2 on the Performance of Nanocomposites
,”
Mater. Lett.
0167-577X,
57
, pp.
2940
2944
.
21.
Gupta
,
N.
, and
Maharsia
,
R.
, 2005, “
Enhancement of Energy Absorption in Syntactic Foams by Nanoclay Incorporation for Sandwich Core Applications
,”
Appl. Compos. Mater.
0929-189X,
12
, pp.
247
261
.
22.
Yasmin
,
A.
,
Luo
,
J. J.
,
Abort
,
J. L.
, and
Daniel
,
I. M.
, 2003,
Proceedings of ASC 18th Annual Technical Conference
,
DES Publications
,
Gainesville, FL
.
23.
Wetzel
,
B.
,
Rosso
,
P.
,
Haupert
,
F.
, and
Friedrich
,
K.
, 2006, “
Epoxy Nanocomposites-Fracture and Toughening Mechanisms
,”
Eng. Fract. Mech.
0013-7944,
73
, pp.
2375
2398
.
24.
Dietsche
,
F.
,
Thomann
,
Y.
,
Thomann
,
R.
, and
Mülhaupt
,
R.
, 2000, “
Translucent Acrylic Nanocomposites Containing Anisotropic Laminated Nanoparticles Derived From Intercalated Layered Silicates
,”
J. Appl. Polym. Sci.
,
75
(
3
), pp.
396
405
. 0021-8995
25.
Pinnavia
,
T. J.
, and
Beall
,
G. W.
, 2000,
Polymer-Clay Nanocomposites
,
Wiley
,
New York
.
26.
Kansy
,
J.
,
Consolati
,
G.
, and
Dauwe
,
C.
, 2000, “
Positronium Trapping in Free Volume of Polymers
,”
Radiat. Phys. Chem.
0969-806X,
58
, pp.
427
431
.
27.
LeBaron
,
P.
,
Wang
,
Z.
, and
Pinnavaia
,
T. J.
, 1999, “
Polymer-Layered Silicate Nanocomposites: An Overview
,”
Appl. Clay Sci.
0169-1317,
15
, pp.
11
29
.
28.
Giannelis
,
E. P.
, 1998, “
Polymer-Layered Silicate Nanocomposites: Synthesis, Properties
,”
Appl. Organomet. Chem.
0268-2605,
12
, pp.
675
680
.
29.
Lam
,
C. K.
,
Cheunga
,
H. Y.
,
Lau
,
K. T.
,
Zhou
,
L. M.
,
Ho
,
M. W.
, and
Hui
,
D.
, 2005, “
Cluster Size Effect in Hardness of Nanoclay/Epoxy Composites
,”
Composites, Part B
1359-8368,
36
, pp.
263
269
.
30.
3M Glass Bubbles Product Information Sheet, 3M Company.
31.
Gupta
,
N.
, and
Woldesenbet
,
E.
, 2004, “
Microballoon Wall Thickness Effects on Properties of Syntactic Foams
,”
J. Cell. Plast.
0021-955X,
40
, pp.
461
480
.
32.
Koopman
,
M.
,
Gouadec
,
G.
,
Carlisle
,
K.
,
Chawla
,
K. K.
, and
Gladysz
,
G.
, 2004, “
Compression Testing of Hollow Microspheres (Microballoons) to Obtain Mechanical Properties
,”
Scr. Mater.
,
50
, pp.
593
596
. 1359-6462
33.
Manevitch
,
O. L.
, and
Rutledge
,
G. C.
, 2004, “
Elastic Properties of a Single Lamella of Montmorillonite by Molecular Dynamics Simulation
,”
J. Phys. Chem. B
1089-5647,
108
, pp.
1428
1435
.
34.
Nanomer I.30 Nanoclay Technical Data Sheet, Lit.T-11 Epoxy Nanocomposites Using Nanomer I.30E Nanoclay, Nanocor Inc.
35.
Wang
,
Q.
,
Xia
,
H.
, and
Zhang
,
C.
, 2001, “
Preparation of Polymer/Inorganic Nanoparticles Composites Through Ultrasonic Irradiation
,”
J. Appl. Polym. Sci.
,
80
, pp.
1478
1488
. 0021-8995
36.
ASTM Standard D695–02a. Standard Test Method for Compressive Properties of Rigid Plastics, American Society for Testing and Materials.
37.
Kaiser
,
M. A.
, 1998,
Advancements in Split Hopkinson Bar Test
,
Virginia Polytechnic Institute and State University
,
Blacksburg, VA
.
38.
Woldesenbet
,
E.
,
Gupta
,
N.
, and
Jadhav
,
A.
, 2005, “
Effects of Density and Strain Rate on Properties of Syntactic Foams
,”
J. Mater. Sci.
,
40
, pp.
4009
4017
. 0022-2461
39.
Wetzel
,
B.
,
Haupert
,
F.
,
Friedrich
,
K.
,
Zhang
,
M. Q.
, and
Rong
,
M. Z.
, 2002, “
Impact and Wear Resistance of Polymer Nanocomposites at Low Filler Content
,”
Polym. Eng. Sci.
0032-3888,
42
(
9
), pp.
1919
1927
.
40.
Matsumoto
,
R.
, and
Nakagaki
,
M.
, 2006, “
Size and Volume-Fraction Effects of Dispersed Nano-Crystalline Particles on the Elastic Constants and Flow Stress of Metallic Glass
,”
Modell. Simul. Mater. Sci. Eng.
,
14
, pp.
S47
S54
. 0965-0393
41.
Monette
,
L.
, and
Anderson
,
M. P.
, 1993, “
Effect of Particle Modulus and Toughness on Strength and Toughness in Brittle Particulate Composites
,”
Scr. Metall. Mater.
0956-716X,
28
(
9
), pp.
1095
1100
.
You do not currently have access to this content.