Torsion experiments were carried out on pure magnesium (99.9%) and the magnesium alloy AZ71 under free-end conditions of testing. The alloy had an axisymmetric initial texture, while the pure Mg samples were prepared from a rolled plate with a nonaxisymmetric initial texture. The torque as a function of the twist angle was measured at different temperatures (room temperature, 150°C, and 250°C). During twisting, systematic shortening of the samples was observed (Swift effect). The evolution of the crystallographic texture was analyzed by electron backscattering diffraction measurements. The occurrence of dynamic recrystallization (DRX) was detected in pure Mg at 250°C. The Swift effect in the axisymmetric samples was simulated with the “equilibrium equation” approach using polycrystal modeling. In the nonaxisymmetric samples, the texture was simulated at different angular positions with the help of the viscoplastic self-consistent model. The changes in the textures due to DRX were explained in terms of the Taylor factor. Finally, the texture evolution was interpreted with the help of the behavior of ideal orientations and persistence characteristics of hexagonal crystals in simple shear.

1.
Sanchez
,
P.
,
Pochenttino
,
A.
,
Chauveau
,
T.
, and
Bacroix
,
B.
, 2001, “
Torsion Texture Development of Zirconium Alloys
,”
J. Nucl. Mater.
,
298
, pp.
329
339
. 0022-3115
2.
Evans
,
W. J.
,
Jones
,
J. P.
, and
Whittaker
,
M. T.
, 2005, “
Texture Effects Under Tension and Torsion Loading Conditions in Titanium Alloys
,”
Int. J. Fatigue
0142-1123,
27
, pp.
1244
1250
.
3.
Swift
,
H. W.
, 1947, “
Length Changes in Metals Under Torsional Overstrain
,”
Engineering (London)
0013-7782,
4
, pp.
253
257
.
4.
Neale
,
K. W.
, and
Schrivastava
,
S. C.
, 1985, “
Finite Elastic-Plastic Torsion of a Circular Bar
,”
Eng. Fract. Mech.
,
21
, pp.
747
754
. 0013-7944
5.
Tóth
,
L. S.
,
Jonas
,
J. J.
,
Daniel
,
D.
, and
Bailey
,
J. A.
, 1992, “
Texture Development and Length Changes in Copper Bars Subjected to Free End Torsion
,”
Textures Microstruct.
0730-3300,
19
, pp.
245
262
.
6.
Van Houtte
,
P.
,
Aernoudlt
,
E.
, and
Sekine
,
K.
, 1981, “
Orientation Distribution Function Measurements of Copper and Brass Torsion Textures
,”
Proceedings ICOTOM 6
, ISIJ, Tokyo, Japan,
S.
Nagashima
, ed., p.
337
.
7.
Montheillet
,
F.
,
Cohen
,
M.
, and
Jonas
,
J. J.
, 1984, “
Axial Stresses and Texture Development During the Torsion Testing of Al, Cu and α-Fe
,”
Acta Metall.
0001-6160,
32
(
11
), pp.
2077
2089
.
8.
Hughes
,
D. A.
, and
Wenk
,
H. R.
, 1987, “
The Effect of Stacking Fault Energy on the Texture on Nickel-Cobalt Solid Solutions at Large Strain
,”
Proceedings of ICOTOM 8
, Santa Fe, NM, Sept. 20–25,
J. S.
Kallend
and
G.
Gottstein
, eds., p.
455
.
9.
Böhlke
,
T.
,
Bertram
,
A.
, and
Krempl
,
E.
, 2003, “
Modeling of Deformation Induced Anisotropy in Free-End Torsion
,”
Int. J. Plast.
,
19
, pp.
1867
1884
. 0749-6419
10.
Duchêne
,
L.
,
El Houdaigui
,
F.
, and
Habraken
,
A. M.
, 2007, “
Length Changes and Texture Prediction During Free End Torsion Test of Copper Bars With FEM and Remeshing Techniques
,”
Int. J. Plast.
,
23
(
8
), pp.
1417
1438
. 0749-6419
11.
Balasubramanian
,
S.
, and
Anand
,
L.
, 2002, “
Plasticity of Initially Textured Hexagonal Polycrystals at High Homologous Temperatures: Application to Titanium
,”
Acta Mater.
1359-6454,
50
, pp.
133
148
.
12.
Barnett
,
M. R.
, 2001, “
Influence of Deformation Condition and Texture on the High Temperature Flow Stress of Magnesium AZ31
,”
J. Light Met.
,
1
, pp.
167
177
. 1471-5317
13.
Fields
,
D. S.
, and
Backofen
,
W. A.
, 1957, “
Determination of Strain Hardening Characteristics by Torsion Testing
,”
Proceedings of ASTM
,
57
, pp.
1259
1271
.
14.
Qods
,
F.
,
Tóth
,
L. S.
, and
Van Houtte
,
P.
, 2005, “
Modeling of Length Changes and Textures During Free End Torsion of Cylindrical Bars
,”
Mater. Sci. Forum
0255-5476,
495–497
, pp.
1609
1614
.
15.
Tóth
,
L. S.
,
Qods
,
F.
, and
Fundenberger
,
J. J.
, 2005, “
Modeling of Axial Strain in Free-End Torsion of Textured Copper
,”
Z. Metallkd.
0044-3093,
96
, pp.
1038
1044
.
16.
Yang
,
Q.
, and
Ghosh
,
A. K.
, 2006, “
Production of Ultrafine-Grain Microstructure in Mg Alloy by Alternate Biaxial Reverse Corrugation
,”
Acta Mater.
,
54
, pp.
5147
5158
. 1359-6454
17.
Beausir
,
B.
,
Tóth
,
L. S.
, and
Neale
,
K. W.
, 2007, “
Ideal Orientations and Persistence Characteristics for h.c.p. Crystals in Simple Shear
,”
Acta Mater.
,
55
, pp.
2695
2705
. 1359-6454
18.
Nadai
,
A.
, 1950,
Theory of Flow and Fracture
,
McGraw-Hill
,
New York
, p.
349
.
19.
Yang
,
Q.
, and
Ghosh
,
A. K.
, 2006, “
Deformation Behavior of Ultrafine-Grain (UFG) AZ31B Mg Alloy at Room Temperature
,”
Acta Mater.
,
54
, pp.
5159
5170
. 1359-6454
20.
Barnett
,
M. R.
,
Keshavarz
,
Z.
,
Beer
,
A. G.
, and
Atwell
,
D.
, 2004, “
Influence of Grain Size on the Compressive Deformation of Wrought Mg–3Al–1Zn
,”
Acta Mater.
1359-6454,
52
, pp.
5093
5103
.
21.
Canova
,
G. R.
,
Kocks
,
U. F.
, and
Jonas
,
J. J.
, 1984, “
Theory of Torsion Texture Development
,”
Acta Metall.
0001-6160,
32
, pp.
211
226
.
22.
Lebensohn
,
R. A.
, and
Tomé
,
C. N.
, 1993, “
A Self-Consistent Anisotropic Approach for the Simulation of Plastic Deformation and Texture Development of Polycrystals—Application to Zirconium Alloys
,”
Acta Metall.
,
41
, pp.
2611
2624
. 0001-6160
23.
Agnew
,
S. R.
,
Mehrotra
,
P.
,
Lillo
,
T. M.
,
Stoica
,
G. M.
, and
Liaw
,
P. K.
, 2005, “
Texture Evolution of Five Wrought Magnesium Alloys During Route A Equal Channel Angular Extrusion: Experiments and Simulations
,”
Acta Mater.
,
53
, pp.
3135
3146
. 1359-6454
24.
Staroselsky
,
A.
, and
Anand
,
L.
, 2003, “
A Constitutive Model for hcp Materials Deforming by Slip and Twinning: Application to Magnesium Alloy AZ31B
,”
Int. J. Plast.
,
19
, pp.
1843
1864
. 0749-6419
25.
Agnew
,
S. R.
, and
Duygulu
,
O.
, 2005, “
Plastic Anisotropy and the Role of Non-Basal Slip in Magnesium Alloy AZ31B
,”
Int. J. Plast.
0749-6419,
21
, pp.
1161
1193
.
26.
Kim
,
W. J.
,
Chung
,
S. W.
,
Chung
,
C. S.
, and
Kum
,
D.
, 2001, “
Superplasticity in Thin Magnesium Alloy Sheets and Deformation Mechanism Maps for Magnesium Alloys at Elevated Temperatures
,”
Acta Mater.
,
49
, pp.
3337
3345
. 1359-6454
27.
Asaro
,
R. J.
, and
Needleman
,
A.
, 1985, “
Texture Development and Strain Hardening in Rate Dependent Polycrystals
,”
Acta Metall.
0001-6160,
33
, pp.
923
953
.
28.
Neale
,
K. W.
,
Tóth
,
L. S.
, and
Jonas
,
J. J.
, 1990, “
Large Strain Shear and Torsion of Rate-Sensitive fcc Polycrystals
,”
Int. J. Plast.
,
6
, pp.
45
62
. 0749-6419
29.
Van der Giessen
,
E.
,
Wu
,
P. D.
, and
Neale
,
K. W.
, 1992, “
On the Effect of Plastic Spin on Large Strain Elastic-Plastic Torsion of Solid Bars
,”
Int. J. Plast.
,
8
, pp.
773
801
. 0749-6419
30.
Tóth
,
L. S.
,
Gilormini
,
P.
, and
Jonas
,
J. J.
, 1988, “
Effect of Rate Sensitivity on the Stability of Torsion Textures
,”
Acta Metall.
0001-6160,
36
(
12
), pp.
3077
3091
.
31.
Tóth
,
L. S.
,
Jonas
,
J. J.
, and
Neale
,
K. W.
, 1990, “
Comparison of the Minimum Plastic Spin and Rate Sensitive Slip Theories for Loading of Symmetrical Crystal Orientations
,”
Proc. R. Soc. London, Ser. A
,
427
, pp.
201
219
. 0001-6160
32.
Beausir
,
B.
,
Suwas
,
S.
,
Tóth
,
L. S.
,
Neale
,
K. W.
, and
Fundenberger
,
J. J.
, 2008, “
Analysis of Texture Evolution in Magnesium During Equal Channel Angular Extrusion
,”
Acta Mater.
,
56
(
2
), pp.
200
214
. 1359-6454
33.
Beyerlein
,
I. J.
,
Lebensohn
,
R. A.
, and
Tomé
,
C. N.
, 2003, “
Modeling Texture and Microstructural Evolution in the Equal Channel Angular Extrusion Process
,”
Mater. Sci. Eng., A
0921-5093,
345
, pp.
122
138
.
34.
Tomé
,
C. N.
,
Tóth
,
L. S.
, and
Skrotzki
,
W.
, 2007, “
Swift Effect and Textures in Free End Torsion of Ni–Al as Predicted From Self-Consistent Polycrystal Viscoplasticity
,” in preparation.
35.
Tóth
,
L. S.
, and
Molinari
,
A.
, 1994, “
Tuning a Self Consistent Viscoplastic Model by Finite Element Results, Part II: Application to Torsion Textures
,”
Acta Metall.
,
42
, pp.
2459
2466
. 0001-6160
36.
Galiyev
,
A.
,
Kaibyshev
,
R.
, and
Gottstein
,
G.
, 2001, “
Correlation of Plastic Deformation and Dynamic Recrystallization in Magnesium Alloy ZK60
,”
Acta Mater.
,
49
, pp.
1199
1207
. 1359-6454
37.
Tan
,
J. C.
, and
Tan
,
M. J.
, 2003, “
Dynamic Continuous Recrystallization Characteristics in Two Stage Deformation of Mg–3Al–1Zn Alloy Sheet
,”
Mater. Sci. Eng., A
,
339
, pp.
124
132
. 0921-5093
38.
Yi
,
S. B.
,
Zaefferer
,
S.
, and
Brokmeier
,
H. G.
, 2006, “
Mechanical Behaviour and Microstructural Evolution of Magnesium Alloy AZ31 in Tension at Different Temperatures
,”
Mater. Sci. Eng., A
,
424
, pp.
275
281
. 0921-5093
39.
Fatemi-Varzaneh
,
S. M.
,
Zarei-Hanzaki
,
A.
, and
Beladi
,
H.
, 2006, “
Dynamic Recrystallization in AZ31 Magnesium Alloy
,”
Mater. Sci. Eng., A
,
456
(
1–2
), pp.
52
57
. 0956-716X
40.
Tóth
,
L. S.
, and
Jonas
,
J. J.
, 1992, “
Modelling the Texture Changes Produced by Dynamic Recrystallization
,”
Scr. Metall. Mater.
,
27
, pp.
359
363
. 0956-716X
41.
Jonas
,
J. J.
, and
Tóth
,
L. S.
, 1992, “
Modelling Oriented Nucleation and Selective Growth During Dynamic Recrystallization
,”
Scr. Metall. Mater.
,
27
, pp.
1575
1580
. 0956-716X
42.
Mohamed
,
G.
, and
Bacroix
,
B.
, 2000, “
Role of Stored Energy in Static Recrystallization of Cold Rolled Copper Single and Multicrystals
,”
Acta Mater.
,
48
, pp.
3295
3302
. 1359-6454
You do not currently have access to this content.