This study illustrates a method of measuring internal total strain based on the observation that networks of internal boundaries within a polycrystalline material deform locally in a manner congruent with the local metal flow. Appropriate measurements of the development of the spatial anisotropy of such networks with increasing deformation provide a basis for defining several measures of the local total strain. These quantities, called “grain strains” when the boundaries observed are grain boundaries, can serve as an experimental measure of the internal total strain at various locations in a specimen for comparison with computations based on finite element models using various constitutive relations or phase field simulations of grain growth or deformation. Experimental measurements of grain strains at the center of a ferritic steel sheet rolled in nominally 10% increments to 50% total reduction in thickness illustrate the method and correlate well with corresponding strains based on measures of the change in thickness of the sheet and the assumption of plane strain.

1.
Aoyagi
,
K.
, and
Ohta
,
K.
, 1983, “
Material Deformation, Rolling Load and Torque in a Three-Roll Planetary Mill
,”
J. Jpn. Soc. Technol. Plast.
0038-1586,
24
, pp.
1039
1047
.
2.
Piwnik
,
J.
, 1986, “
Modeling of the Influence of Voids on the Behaviour of a Material Plastically Deformed in Extrusion
,”
Obróbka Plastyczna Metali
,
25
, pp.
31
40
.
3.
Shabaik
,
A.
, and
Thomsen
,
E. G.
, 1973, “
Computer Aided Visioplasticity Solution of Some Deformation Problems
,”
Proceedings of the International Symposium on Foundations of Plasticity
, Warsaw, Poland, Aug. 30–Sept. 2, pp.
177
199
.
4.
Hartley
,
C. S.
, and
Dehghani
,
M.
, 1987, “
Evolution of Microstructure During Cold Rolling
,”
Proceedings of the Seventh ICSMA
,
H.
McQueen
,
J.-P.
Bailon
, and
J.
Jonas
, eds.,
Pergamon
,
New York
, Vol.
2
, pp.
959
964
.
5.
Cowin
,
S. C.
, 1986, “
Wolff’s Law of Trabecular Architecture at Remodeling Equilibrium
,”
ASME J. Biomech. Eng.
,
108
, pp.
83
88
. 0148-0731
6.
Kanatani
,
K.
, 1984, “
Distribution of Directional Data and Fabric Tensors
,”
Int. J. Eng. Sci.
0020-7225,
22
, pp.
531
546
.
7.
Hartley
,
C. S.
, 2006, “
Strain and the Quantitative Characterization of Anisotropic Microstructures
,”
Metall. Mater. Trans. A
1073-5623,
37
, pp.
3531
3539
.
8.
Malvern
,
L. E.
, 1969,
Introduction to the Mechanics of a Continuous Medium
,
1st ed.
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
9.
Lubliner
,
J.
, 1990,
Plasticity Theory
,
Macmillan
,
New York
, p.
440
.
10.
DeHoff
,
R. T.
, and
Rhines
,
F. N.
, 1968,
Quantitative Microscopy
,
McGraw-Hill
,
New York
.
11.
Whitehouse
,
W. J.
, 1974, “
The Quantitative Morphology of Anisotropic Trabecular Bone
,”
J. Microsc.
,
101
, pp.
153
168
. 0022-2720
12.
Harrigan
,
T. P.
, and
Mann
,
R. W.
, 1984, “
Characterization of Microstructural Anisotropy in Orthotropic Materials Using a Second Rank Tensor
,”
J. Mater. Sci.
0022-2461,
19
, pp.
761
767
.
13.
Horng
,
S. -T.
, 1989, “
Microstructural Anisotropy in Uniaxial Deformation
,” MS thesis, University of Alabama at Birmingham, Birmingham, AL.
14.
Mullens
,
H. M.
, 2003, AUTO-MAT 2D: A Macro forAutomatically Calculating the Microstructural Anisotropy Tensor, PASCAL code, AFML/ML, Wright-Patterson AFB, OH.
15.
Kanatani
,
K.
, 1984, “
Stereological Determination of Structural Anisotropy
,”
Int. J. Eng. Sci.
0020-7225,
22
, pp.
531
546
.
16.
Kröner
,
E.
, 1959, “
Allgemeine Kontinuumstheorie der Versetzungen und Eigenspannungen
,”
Arch. Ration. Mech. Anal.
,
4
, pp.
273
334
. 0003-9527
17.
Lee
,
E. H.
, and
Liu
,
D. T.
, 1967, “
Finite-Strain Elastic-Plastic Theory With Application to Plane-Wave Analysis
,”
J. Appl. Phys.
0021-8979,
38
, pp.
19
27
.
You do not currently have access to this content.